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1 Introduction 

The main goal of the SHARED project is to develop a methodology for hierarchical control, 
including theory, algorithms, and experimentations. The goal also is to demonstrate the 
methodology in a prototype tool for optimal planning of shared responsibilities and roles in the 
hierarchical deployment and operation of teams of distributed cooperative automaton entities and 
human operators in future combat systems, in adversarial and uncertain situations.  

The underlying theme of the SHARED project is the use a hierarchical game theoretic 
framework, where entities at different levels use leader-follower games, peer entities at the same 
level use principles of cooperative games, robustness and estimation theory are blended, and 
total system design is human-centered. The investigation at all levels of the functional hierarchy 
will explicitly consider presence of intelligent adversary using non-cooperative game theory.  

In this section we briefly summarize the main modules of the SHARED software system, the 
TCT (Team Composition and Tasking), TDT (Team Dynamics and Tactics), CPP (Cooperative 
Path Planning) and VIA (Variable Initiative Automation). A short scenario of use for the 
SHARED system completes this section. 

1.1 TCT Summary 

The main purpose of TCT is to develop and provide an algorithm to schedule tasks at the mission 
level and allocate resources associated to these tasks. In order to accomplish this, a number of 
innovative developments were undertaken: first, a rule base is developed to help task prioritizing 
based on Rules of Engagements. Second, several parameters are introduced for a probabilistic 
framework for timing and resource calculation. Third, several criteria are considered in order to 
allocate the heterogeneous resources. TCT is within a large feedback loop where it is called if 
major discrepancies in expectations occurs or stages terminate. 

The major accomplishments of TCT include: 

 Architecture of TCT was developed to perform task decomposition in the SHARED 
system. 

 TCT provides an algorithm of non-homogenous resource allocation based on the 
following variables: 

o Number of targets. 

o Air defensibility of targets. 

o Target status, classified as potential, known, unknown. 

o Information ability of targets, like communication capability. 

 TCT schedules the tasks using the following: 

o Classify all tasks into several task types. 

o Group all targets into several areas. 

o Generate stages based on task types and tasks. 
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o Provide several equations to estimate the duration for each stage. 

o Develop a rule based from the information in hand to help schedule the whole 
process. 

 The above resource allocation algorithm, task scheduling and time estimation are 
integrated into a self-defined function in SHARED system, called the TCT agent. The 
TCT agent works to 

o Generate task duration, including ending moments, based on all the current input 
task information 

o Allocate available UAVs into each task associated with the first stage. 

o Estimate the loss in both sides by a probability inner model of the battle, which is 
built by the information provided by the input data to the TCT agent. 

o Allocate all estimated available UAVs into each tasks associated with the future 
stages, in order to give a whole view to the commander. 

o Output all results, like stage information, the ending time and associated UAVs, 
ready to be presented to the human commander. 

 TCT also provides a pre-run simulator to estimate probabilistic outcomes (not integrated 
into system yet) 

1.2 TDT Summary 

The main purpose of TDT is to develop an effective target assignment algorithm and an optimal 
salvo size algorithm to destroy the opposing force combat capabilities. Furthermore, the TDT 
mission plan will find an optimal deployment of decoys, jamming and avoid collateral damage. 
There are two subparts: TDT Hierarchical and TDT ULTRA. 

The major accomplishments of TDT Hierarchical are as follows:  

 A non-zero-sum non-cooperative game theoretical algorithm has been developed to 
determine the optimal salvo size to achieve the minimum remaining platforms of red and 
the maximum remaining platforms of blue at the end of a battle. 

 A Game Based hierarchical TDT architecture has been developed. This was 
accomplished by the innovative integration of heuristic based upper level planning 
(multi-stage UAV-target assignment) and event based lower level game, which considers 
the collateral damage effect.  

 A Cooperative Jamming Strategy has been developed to make use of the network-Centric 
paradigm by exploiting multiple platforms to gain geometric, physical and tactical 
advantage. 

 A Cooperative Decoy Deployment method has been developed to maximize the total 
probability of survival of Blue UAVs. 

 A software environment has been developed to test TDT is a simplified simulator which 
includes the AID, TCT, CPP and TDT. It can do multi-team & multi-mission tests. 
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 Full integration of TDT with AID and other modules of the SHARED project, and 
connectivity to software simulations and hardware demonstrations provided by the OEP. 

The major accomplishments of TDT ULTRA are as follows:  

 The TDT ULTRA starts with an assignment obtained from the TCT level for a team of 
Blue UAV to be engaged in battle against a team of Red Units (SAM sites, troops, etc.). 
The basic premise of the TDT ULTRA is that if each Blue UAV is left to select its own 
Red targets based on its own information and with no coordination with other UAVs, 
then the result will be that each UAV will select the easiest and most visible Red target. 
That is, most UAVs will end up targeting the same Red unit and consequently many Red 
units will be missed. Thus the focus of the TDT ULTRA is to coordinate the Blue Team 
Target Selection Strategy (TSS) so as to maximize the collective Blue team damage 
against the Red units. 

 The TDT ULTRA assumes that the Red units are also optimizing and coordinating their 
targeting strategy against the Blue units and as a result determines the target selection 
strategy based on a game theoretic approach. The TDT ULTRA uses the Nash solution as 
the basis for determining the Blue team’s target selection strategy.  

 At the same time, the TDT ULTRA determines an “estimate” of the Red team’s target 
selection strategy. 

 The TDT ULTRA addresses the major issue of scalability that is often viewed as a 
drawback to the use of a game theoretic approach in target selection. This issue arises 
when the opposing teams consist of non-homogeneous units and hence a unit-on-unit 
target selection strategy has to be determined.  

 An efficient search method to determine the Non-Cooperative Nash Team Target 
Selection Strategy based on a Unit Level Team Resource Allocation search (ULTRA) has 
been developed to deal with this issue. 

 The ULTRA algorithm was tested for parameter sensitivity and robustness on numerous 
test examples and scenarios either developed at PITT or based on the Boeing challenge 
problems.  

 A fast real-time implementation of an ULTRA-based TDT controller in feedback form 
was developed. 

 The performance of ULTRA with and without feedback from the Boeing OEP was 
compared. 

 A Monte Carlo simulation approach was used to determine lower and upper bounds on 
ULTRA’s performance. 

 The concept of Distance Discount Factor (DDF) was introduced to address the issue that 
close but less significant targets could be more important than more significant but far 
targets. 

 The TDT ULTRA based on ULTRA was fully integrated into the SHARED system. It 
includes the following features: (a) Sensor scheduling (Find, Identify, and BDA), (b) 
Multiple types of weapons per UAV, (c) Movement, position, and firing range, (d) Non-
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uniform planning horizons, (e) Jamming and use of decoys, (f) Non Combat (Sensor) 
UAVs, (g) Adherence to R.O.E., and (h) Long term planning. 

 Finally, the Nash target selection strategy used in ULTRA was compared to naïve target 
selection strategies such as a random selection strategy and a unit greedy selection 
strategy. The results show that there is considerable advantage to using the Nash strategy. 

1.3 CPP Summary 

The main purpose of CPP is to develop a set of algorithms such that UAVs in a given scenario 
could cooperatively find a desired path to reach certain destinations and search a bounded area to 
increase certainty in the area. The CPP module is decomposed into two sub-modules: CPP-
PointToPoint (CPPP) and CPP-Search (CPPS).  

CPPP specifies way-points for UAVs to reach certain destinations while meeting certain 
requirements, including minimizing en route dangers, meeting time constraints, keeping mutual 
spacing, and decreasing fuel consumption, etc. 

The major accomplishments of CPPP include: 

 A biological perspective is adopted on UAV groups and foraging theory is applied in 
cooperative path planning. The cohesion properties of the UAV groups are studied in a 
stability-theoretic framework. 

 Different dynamic models for UAVs are constructed and different implementations are 
compared for purpose of evaluation. 

 Three dimensional path planning algorithm is developed and its capability is enhanced 
with a heuristic approach. The impacts of uncertainty and limited UAV sensing capability 
on the path planning are also investigated. 

 All algorithms are implemented in OEP testbed and theoretical results are verified. Full 
system integration is accomplished. 

Cooperative Path Planning: Search is concerned with directing the paths of UAV’s such that 
uncertainty about the environment is reduced and new targets are discovered while previously 
discovered targets are classified. This is a key problem to solve in the presence of uncertainty. 

The major accomplishments of CPPS are: 

 Formulation of a stochastic decision-making algorithm to produce paths for the CPP 
Search problem. 

 Model of targets and threats in a 3-D environment 

 Development of cooperative methods to allow for decentralized planning 

 Integration of approach with rest of SHARED 

1.4 VIA Summary 

The object of the Variable Initiative Automation (VIA) portion of the SHARED project was to 
apply automated interaction design (AID) technology to military command and control domains, 



SHARED Final Report 

   5

particularly automated planning environments, with the basic goal of meeting the human 
interaction requirements for control of multiple groups of unmanned air vehicles performing 
SEAD missions. In addition, this portion of the project was responsible for the overall system 
architecture, module integration, and software development. 

Research goals emphasize the use of design automation technology to prove the concept of user 
interface creation by software agents, based on user needs and capabilities and reflecting the 
dynamically changing status of the situation.  

Application goals emphasize the development and implementation of the SHARED software 
and the demonstration of advanced automated reasoning, planning, and design in a hardware 
context.  

High level VIA project accomplishments included: 

• Research and development leading to an AID system that provides consistent and useful 
situated interactions between a commander and a squad of unmanned aerial vehicles, 
supporting the full range of mixed-initiative control required. 

• Design and implementation of the SHARED software application as a set of software 
agents, based on advanced automated reasoning capabilities and compositional 
knowledge representation structures. 

• Full integration of specialized planners developed in other portions of the SHARED 
project, and connectivity to software simulations and hardware demonstrations provided 
by the OEP. 

1.5 SHARED Scenario of Use 

The commander is assigned a squad of UAVs and an area of operations. When SHARED is 
initially started, IPB is collected from the simulator and a situation model is built from that 
information by extending the semantics of the entities in the situation and interconnecting them 
through hierarchical and relational information. 

Each object in the situation model is responsible for interacting as necessary with other objects. 
For example, when the object representing the squad of UAVs has an unfilled plan, and so looks 
for associated agents who can perform the task planning activity it requires. If it has an 
associated TCT Agent that is capable of team formation, it calls that TCT to request a plan. If 
there isn’t a TCT, it assigns its planning activity to the human and sends the planning request 
through the UI. In the same way, once they are created, teams need to be planned, and so call a 
TDT agent. The result is a default plan on the situation. Once the situation is fully formed and 
planners have been called, the human need for interaction with the situation causes the UI to be 
presented to the commander (including interactions for activities that haven’t been performed 
because the automation may not be available). An example screen shot is shown below. 
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Figure 1.1 An Example of Operation Interface 

 

If the commander is satisfied with automated planning, and has no modifications to ROE or 
guidance to express, he may select to approve (start) the battle, and the fully automated battle 
progresses. Default settings cause the squad to call the TCT every time the number of threats 
changes by 10%. Teams call their TDT automatically every time there is a change in the 
numbers of threats or assets, or if a time trigger of 3 minutes has been reached. Each UAV that is 
performing a Fly action calls the appropriate CPP (point-to-point or search). 

The description above illustrates SHARED support of a fully automated scenario, where the 
human has minimal interaction and control requirements. The software, however, is intended to 
provide for the full range of variable initiative behavior from all agents. Each of the human’s 
capabilities, whether or not it is provided by automation, is accessible through the user interface 
to the system, and the human may take action at any level to collaborate and share 
responsibilities with each of the available automated entities, or, if necessary, override the 
automation completely. Although the current version of SHARED does not provide for real-time 
manual flight control (the lowest level in our control hierarchy), it does provide for variable and 
mixed-initiative control of all of the higher levels of the system by humans at all times. 

The commander shares command responsibilities with the automated agents through his 
modification of the default situation interpretation and rules of engagement, or through the 
expression of suspicions or constraints that are not known to the system. Both before the battle 
and during the course of the battle, the commander may select different situation objects and 
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modify parameters that change will affect the actions of the planners. For example, at the team 
level of detail, the commander may change the high-level identification certainty required for 
attack, or express ideas about enemy intent. At the level of each enemy area, the commander can 
change the objectives for that area (SEAD, Interdiction, Close Air Support). For each enemy 
system, the Rules of Engagement (TCT [time critical target], Kill Zone [only attack in kill zone], 
Hostilities [only if attacked], or No Strike) may be changed, and suspected objects can be added 
and placed in their most likely location on the battlefield. In addition, the measure of merit may 
be set individually for each enemy system. Friendly areas are protected by default, but the 
commander can change that setting to exclude blue protection for any zone. 

In addition to control over the planning parameters at various levels, the commander may invoke 
planning manually, and has full control over the parameters under which automated re-planning 
will take place. Both the TCT and the individual TDT planners may be set to re-plan after a 
specified elapsed time or based on a specified level of change to assets or targets. Throughout the 
planning and battle stages, the commander is presented with displays that allow him full 
situational awareness of the evolving situation together with the ability to take action at any level 
of granularity, as necessary. 
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2 Research Goals and Objectives 
2.1 TCT Goals 

The research goals/objectives of TCT are to provide a hierarchical system tool for human 
commander to plan the whole mission. A sequence of tasks associated with the length of time 
should be provided by TCT module. Given a set of heterogeneous resources, the team for each 
task needs to be formed. TCT module also needs to communicate/interact with other modules 
and human in the system. A simulation capability to evaluate outcomes was also developed. 

2.2 TDT Goals  

Two research groups, one at OSU and one at Pittsburgh, developed TDT approaches. 

2.2.1 TDT-Hierarchical Goals 

Milestone Objective/Goal Deliverables Evaluation 
Criteria 

Measures 

Feasibility 
demo and 
detailed plan 

End of 
February, 
2002 

1. Justification of 
possible technical 
approaches 

2. Description 
and justification 
of any deviations 
from SOW3. 
Requirements 
understanding 

4. Detailed task 
plan 

1. Proposal of 
cooperative control 
of teams using 
Pareto-optimality 
concepts.  

2. Proposal of 
cooperative teams 
operating in the 
presence of an 
adversary. 

3. Proposal of 
representing 
adversarial impact 
by non-zero-sum 
non-cooperative 
game theory. 

1. Feasibility of 
proposed 
algorithms in 
solving tasks of 
Team Dynamics 
and Tactics: are 
these proper 
algorithms?  

 

1. Positive evaluation 
of proposed 
algorithms.  

2. Detailed plan for 
next 6 months. 
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Milestone Objective/Goal Deliverables Evaluation 
Criteria 

Measures 

P-controller 
Design and 
Preliminary 
Integration 

End of 
September, 
2002 

1. Implement 
non-cooperative 
static Nash 
games and mixed 
strategies to 
optimize salvo 
size. 

2. Integration in 
the overall 
SHARED 
domain model.  

 

1. A new theory for 
the control of teams 
of cooperating 
entities in the 
presence of 
intelligent 
adversaries using a 
game theory 
framework involving 
non-cooperative 
static Nash games 
and mixed strategies, 
together with 
feedback control 
principles, using 
nonlinear dynamic 
models.  

2. A simplified 
integration within 
the MICA functional 
hierarchy. 

3. A theory 
implemented on 
Boeing OEP. 

4. Scalability 
analysis. 

5. A new method for 
UAV/Target pairing 
using binary integer 
programming with 
fuzzy objectives. 6. 
Detailed plan for 
next period. 

1. Performance of 
blue using 
proposed 
algorithms. 

2. Possibility to 
connect to other 
SHARED 
modules. 

 

1. Reasonable attrition 
results from P-
controller for two sets 
of battle. 

2. Demonstration of 
integrated simulation 
results on the Boeing 
Challenge Problem 
1.0. 

3. Detailed plan for 
next research period. 
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Milestone Objective/Goal Deliverables Evaluation 
Criteria 

Measures 

TDT 
Module 
Self-Testing 
in the 
Software 
environment 

End of 
April, 2003 

1. Stable and 
satisfactory 
performance of 
TDT module. 

2. Full integration 
with other 
SHARED 
modules. 

3. Representation 
of White part in 
the non-
cooperative 
game. 

4. Development 
of decoy 
deployment 
algorithm. 

1. Overall and 
detailed flowcharts 
of TDT module. 

2. A software 
environment acting 
as the Situation 
Representation to 
test the performance 
of TDT module, 
including 
inputs/outputs and 
integration to TCT, 
CPP, AID, and OEP. 

3. Analytical 
representation of 
collateral damage in 
the objective 
function. 

4. Optimization of 
decoy deployment 
for multiple targets. 

5. Extended 
Bidirectional 
Associative Memory 
(BAM) effectiveness 
for TDT and CPP 
Application.  

6. Development of 
bit weight BAM 
encoding strategy. 

7. A switching 
strategy in 
UAV/Target pairing 
assignment.  

1. Is performance 
of TDT module 
with newly 
proposed 
algorithms 
reasonable and 
satisfactory? 

2. Is integration to 
other SHARED 
modules 
successful? 

 

1. Collateral damage is 
reduced. 

2. Greatly improved 
probability of survival 
of UAV with 
optimized decoy 
deployment strategy. 

3. UAVs switch target 
assignment under 
necessary condition. 

4. Successful 
integration with other 
SHARED modules. 

 



SHARED Final Report 

   11

Milestone Objective/Goal Deliverables Evaluation 
Criteria 

Measures 

Hierarchical 
Team 
Tactics 

End of 
September, 
2003 

1. Details of 
hierarchical team 
tactics scenario. 

2. Optimization 
of Jamming 
strategy. 

3. Integration of 
BAM in 
TDT/CPPP 
modules. 

1. Full structure of 
hierarchical team 
tactics scenario.  

2. Target Grouping 
concept 
implemented to 
reduce searching 
space for target 
assignment. 

3. Weighted shortest 
path algorithm 
implemented to meet 
time constraints in 
target assignment.  

4. Cooperative 
jamming strategy. 

1. Is performance 
of TDT module 
with newly 
proposed 
algorithms 
reasonable and 
satisfactory? 

2. Is integration to 
other SHARED 
modules 
successful? 

 

1. Greatly increased 
number of survived 
UAV at the end of 
battle with optimized 
decoy deployment 
strategy and 
cooperative jamming 
strategy. 

2. Simulation results 
of weighted shortest 
path algorithm. 

3. Successful 
integration with other 
SHARED modules. 

2.2.2 TDT-ULTRA Goals 

An important level in the operational hierarchy of overall system is the Team Dynamics and 
Tactics (TDT) level. At this level, individual autonomous entities, such as unmanned aerial 
vehicles (UAVs) within a team are assigned to a given set of subtasks in order to accomplish an 
overall team task. These assignments will support a collective team objective, and will be 
translated into end states to be pursued at the next lower level of planning, cooperative path 
planning.  
With consideration of adversaries in a real battle, the optimal strategies for both sides can be best 
analyzed within the framework of non-cooperative game theory. The goals of TDT-ULTRA 
include developing the Nash strategies as the optimal tactics for the teams in both forces. One 
important step is to address the issue of scalability in calculating target assignments with non-
homogeneous units on each side. An efficient search algorithm needed to be developed in order 
to determine the Nash solution. A simulation software package also needed to be developed as a 
test bed to investigate the performance of various team tactics developed at this TDT level.   
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Milestone Objective/Goal Deliverables Evaluation 
Criteria 

Measures 

Scalability 
issues in 
determining 
Nash solution 
and 
preliminary 
Integration  

End of April, 
2002 

1. Scalability 
issue in target 
selection 

2. Development 
of Efficient 
algorithm in 
search space  

3. Development 
of blue team 
coordination 
strategies in 
target selection  

4. Development 
of feedback 
Nash strategies 
dealing with 
Boeing 
challenge 
problems 

 

1. Scalability issue 
arises when 
determine the Nash 
solution of the target 
selections for both 
friendly team and 
opposing team if 
each team consists of 
a large number of 
non-homogeneous 
units.  

2. An algorithm 
called ULTRA is 
developed to address 
unit level resource 
allocation.  

3. The flow chart of 
efficient search 
algorithm.  

4. Full flowchart of 
the implementation 
of ULTRA feedback 
control within the 
Shared model. 

 

1. Is the newly 
developed 
algorithm sensitive 
to parameter 
variation?  

2. Does the 
implementation of 
feedback control in 
Boeing challenge 
problem improve 
the overall 
performance of the 
blue team?  

3. Is integration to 
other SHARED 
modules such as 
TCT and CPP 
successful? 

 

1. Computation 
complexity is greatly 
reduced. 

2. The robustness and 
sensitivity are verified 
on numerous scenarios 

3. The net 
performance of the 
Blue force tends to 
improve with feedback 
as the battle progresses 
compared to the open-
loop controller. 

4. Successful 
integration with other 
SHARED modules. 
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Milestone Objective/Goal Deliverables Evaluation 
Criteria 

Measures 

PITT test-bed 
software 
development 
and full 
integration 
with Shared 
system 

End of 
October, 
2003 

1. Development 
of a software 
package which 
directly connect 
with Boeing 
open 
experimental 
platform  

2. Full 
integration with 
other Shared 
modules  

3. Various tests 
of ULTRA 
algorithm on 
both PITT 
developed 
package and 
Boeing open 
experimental 
platform 

4. Development 
of strategies to 
address the 
target selections 
for the 
geographically 
distributed 
targets  

5. Development 
of strategies to 
tackle the 
jamming and 
decoy issues 

1. The ULTRA 
algorithm is 
extended to include 
the following new 
features: (1) Sensor 
scheduling (Find, 
Identify, and BDA), 
(2) Multiple types of 
weapons per UAV, 
(3) Movement, 
position, and firing 
range, (4) Non-
uniform planning 
horizons, (5) 
Jamming and use of 
decoys, (6) Non 
Combat (Sensor) 
UAVs, (7) 
Adherence to 
R.O.E., and (8) Long 
term planning   

2. Introduction of 
Distant Discount 
Factor (DDF) into 
objective function 
used to calculate the 
target selection 
strategies for the 
geographically 
distributed targets. 

3. Development of 
game-theoretic 
jamming and decoy 
assignment based on 
the calculated blue 
control and 
estimated red 
control.  

1. Is ULTRA 
algorithm fully 
integrated into the 
Shared system? 

2. How DDF 
works for the 
geographically- 
distributed-target 
selections? 

3. Is team Nash 
target selection 
superior to other 
strategies of target 
selections such as 
random target 
selection, unit 
greedy target 
selection and group 
target selection? 

4. Does developed 
jamming and decoy 
strategies work for 
the challenge 
problem? 

1. The ULTRA 
algorithm is fully 
integrated into the 
Shared system. 

2. The DDF is proved 
to be important in 
target selection 
especially when the 
target units have 
different worth and the 
more valuable targets 
are farther than the 
less valuable ones.  

3. Without information 
of the enemy’s 
strategies, the team 
greedy and team Nash 
strategies are far 
superior to the other 
two. The more 
effective the force is, 
the higher the 
incremental 
improvements of the 
Nash strategy will be 
over other strategies. 

5. Increased number of 
survived UAV at the 
end of battle by using 
intelligent jamming 
and decoy strategies. 
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2.3 CPP Goals 

In a given scenario, there may exist many targets and threats that are either known or pop-up, 
stationary or mobile, isolated or well covered. Almost all of them are of UAVs’ interest. 
Information about these targets/threats is either known a priori or need to be discovered 
incrementally in the field.  

The research goals/objectives of CPPP is such that UAVs plan paths cooperatively to reach 
certain destinations while meeting certain requirements, including minimizing en route dangers, 
meeting time constraints, keeping mutual spacing, and decreasing fuel consumption, etc. The 
CPPP also needs to communicate/interact with other modules/human in the system. 

The goal of CPPS is to effectively plan paths to control the movements of air vehicles such that 
the maximum information about the environment can be discovered at a minimum risk to the 
vehicles. This is done with mind to both computational efficiency and cooperation---between 
peer vehicles, and between CPPS and other modules and / or human commanders. 

2.4 VIA Goals 

Milestone  Objective/Goal Deliverables Evaluation 
Criteria 

Measures 

Feasibility 
Demo 
Milestone 
(Iteration 
1) 

Life Cycle 
Objective  

End of 
February, 
2002 

Demonstrate 
feasibility of 
automated 
interface 
design in 
minimal domain-
specific scenario 

Demonstrate 
basic 
connectivity to 
OEP 

Requirements 
understanding 

Detailed task 
plan 

Software design for 
SHARED 
framework  

Supporting software 
embodying Iteration 
1: one task, one user, 
minimal domain 
semantics, OEP 
connectivity 

VIA design 
documentation 
- Software Design 
Document 
- Model 
Documentation 
- Java 
Documentation 

Demonstration of 
basic framework 

Feasibility of VIA 
for use in military 
domain: Is this the 
right system to 
make?  

Stable vision?  

Stable 
architecture? 

Risks addressed? 

Detailed plan? 

Positive evaluation of 
planned functionality 
and UI paradigm by 2 
subject matter experts 

Full documentation of 
vision and architecture

Full risk analysis 

Plan for 5 iterations 
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Milestone  Objective/Goal Deliverables Evaluation 
Criteria 

Measures 

Life Cycle 
Architecture 
Milestone 
(Iteration 
2) 

End of 
September, 
2002 

Demonstration of 
basic VIA system 
with multiple 
roles, tasks, 
views, and 
processes 

Generation of a 
usable SEAD 
command user 
interface, 
including all 
required tasks 
and participating 
objects.  

Progress towards 
communication 
with one 
SHARED 
module 

Full requirements 
specification  

Software 
architecture 
specification  

Architecture 
prototype, 
demonstration of full 
framework 

Continuing advances 
in OEP 
communication 

Preliminary 
Communication with 
one SHARED 
Module 

Stable 
architecture? Risks 
addressed? 
Detailed plan?  

Is this the right 
functional set? 

Functionality 
adequate and 
available?  

Are these the right 
architectural 
details? 

Is it possible to 
connect to other 
SHARED 
modules? 

100% of required 
functions planned 

Positive evaluation by 
4 SMEs of functional 
adequacy, general UI 
paradigm 

100% of planner 
functions and 100% of 
OEP entities available 
in domain model 

Full integration with at 
least 1 planner 
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Milestone  Objective/Goal Deliverables Evaluation 
Criteria 

Measures 

Year 2 
Demo  
(Iteration 
3)  

End of 
April, 2003 

Demonstration of 
VIA with 
communication 
with OEP and all 
SHARED 
modules 

Incorporation of 
information about 
uncertainty, 
plans, tasks 

Agreement on 
full design and 
implementation 
plan for Iteration 
4 

Development of 
experimental and 
advanced plans 

Software 
executable(s) and 
demonstration  

Full communication 
with OEP advances 

Full communication 
with all SHARED 
modules. 

Full documentation 
for Iteration 3 
additions and 
changes 

Stable 
architecture? Risks 
addressed? 
Detailed plan?  

Functionality 
adequate and 
available? 

Functionality 
contributes to 
MICA goals? 

Is it possible to 
connect to all 
SHARED 
modules? 

Is it possible to 
generate user 
interfaces to all 
required functions 
and modules? 

Has progress been 
made on 
automation of task 
selection and 
automation? 

Less than 20% 
architectural changes, 
full plans through 
iteration 5 

Positive evaluation of 
functionality and UI 
paradigm by 4 SMEs; 
feedback driven 

Positive evaluation by 
2 UI evaluators 

Connection to all 
SHARED reasoners, 
use of 75% of OEP 
functionality 

Full domain 
specification of user 
needs and activities 

Full implementation of 
need-based UI 
generation for all basic 
interaction functions 
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Milestone  Objective/Goal Deliverables Evaluation 
Criteria 

Measures 

Year 3 
Demo 

Software 
Demo 
(Iteration 
4)  

End of 
April, 2004 

Demonstration of 
ability of 
multiple groups 
of UAVs to be 
controlled by few 
humans. 

Demonstration of 
task selection 
based on 
situational 
pressures 

Incorporation of 
Jview widgets  

Agreement on 
full design and 
implementation 
plan for Iteration 
5. 

Software 
executable(s) and 
demonstrations 

Full documentation 
for Iteration 4 
additions and 
changes 

Documentation of 
VIA reasoning and 
heuristics. 

Manual plan revision 
capabilities 

Stable? Risks 
addressed? 
Detailed plan? 

Is VIA 
collaborating with 
other SHARED 
components? 

Can VIA generate 
usable interfaces 
driven by tasks? 

Is the performance 
of VIA improved 
by the addition of 
JView and 3D 
navigation 
capabilities? 

Less than 5% 
architectural changes, 
full plans revision; 
addresses 100% of 
OEP functions and 
capabilities, 100% of 
required UI functions 
generated 

Demonstration of 
automated plan 
triggering 

Comparative results 
from 4 users with 
iterative improvement

Adherence to all 
applicable UI 
standards 
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3 Progress Against SOW 

The MICA program was terminated after two years, during Iteration 4 of the development of the 
SHARED software. An analysis of progress at the halfway point against the initial task statement 
is given in this section. 

3.1 TCT Development 

Task II. C.3.1.2 (a) The Task Framework 
Progress: The overall task framework for SHARED was completed. 

A three-level hierarchical structure has been developed.  

The SHARED implementation does not follow this task framework exactly, although portions of 
it have been used in the implementation. 

Task II. C.3.1.3 Plan and Evaluation  
Progress: Incomplete.  

The plan for the whole mission is completed. But the criterion to evaluate the strategy of the 
allocation is unfinished. 

3.2 TDT-Hierarchical Development 

Task II. C.3.1.2 (b) Iterative Integration of Commander in Team Composition and tasking 
Using Ordinal games 
Progress: Incomplete. Modeling and algorithm has been completed, but the implementation is 
unfinished. 

Task II. C.3.2.2 (a) Cooperative Control of Teams Using Pareto-optimality Concepts  
Progress: Complete 

We formulate cooperative control in the framework of Pareto optimization and seek to obtain the 
set of Pareto optimal solutions. Automatically excluded from this set are sets of controls for 
which every team is worse off. These latter controls are called inferior solution. A convex linear 
combination of the team objective functions is formed and standard optimal control methods are 
applied to the composite objective function. For each set of values of the parameter weighting 
coefficients we obtain a Pareto-optimal solution.  

Task II. C.3.2.2 (b) Using Non-zero-sum Non-cooperative Game Theory to Represent 
Adversarial Impact 
Progress: Complete 

One type of uncertainty in military operations is the impact of an intelligent adversary. We 
reduce this uncertainty by using a game theoretic framework involving non-cooperative static 
Nash games and mixed strategies, together with feedback control principles, using nonlinear 
dynamic models. Also, for a determined UAV/Target pair, play a non-zero-sum non-cooperative 
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game, cooperating with cooperative jamming algorithm and decoy deployment algorithm, to 
determine the optimal salvo size, decoy deployment and cooperative jamming strategies. The 
different cultural and social idiosyncrasies, effects-based operator and collateral damage effects 
is modeled by different weights and coefficient in objective function 

Task II. C.3.2.2 (c) Cooperative Teams Operating in The Presence of an Adversary 
Progress: Complete 

Combine the featuring in (a) and (b).  

Task II. C.3.4.2 (c) Estimating Intent of the adversary 
Progress: Plan for Year 3 

We may use learning game or partial observable Markov chain to tackle this subtask. 

Task II. C.3.1.2 (a) The Task Framework  
Progress: Complete 

Refer TCT 

3.3 TDT-ULTRA Development 

Task II.C.3.1.2(b) – Iterative Integration of Commander in Team Composition and Tasking 
Using Ordinal Games. 
Status: Theory Completed 

We have developed a theory for team composition and tasking in which a commander is given a 
set of possible battle outcomes, each corresponding to a combination of both friendly and enemy 
team compositions. The commander then rank orders these outcomes according to both, his own 
preferences, and his estimate of the enemy commander’s preferences. From these subjective 
assessments, we can construct a non-zero-sum game matrix and determine a Nash equilibrium 
strategy without going through the process of constructing objective functions (which could be 
very difficult and impractical to construct in such cases).  Further work and implementation of 
this task into the SHARED system has been postponed to concentrate on other aspects of TDT as 
per the objectives of MICA.  

Task II.C.3.2.2(a) - Cooperative Control of Teams Using Pareto-optimality Concepts 
Status: Completed 

We have developed a theory for dealing with competing teams of cooperative units. We 
considered a structure where there are several teams that are competing and each team consists 
of units that are cooperating for the benefit of the team. We have developed a solution concept 
for such systems called the Non-inferior Nash Strategy. A PhD thesis (Yong Liu) and a paper 
appearing in JOTA contain the details of this theory. We have implemented the results of this 
theory to the problem of target selection in a game environment in which each side is composed 
of a number of heterogeneous units, each capable of independent target selection. These units 
work cooperatively through the use of a team objective function. Thus, given an enemy target 
selection strategy, it is possible to calculate the team optimal strategy. However, the exponential 
relationship between the size of the resulting search space and the number of units present 
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prohibits the use of standard game theoretic techniques even for situations involving small 
numbers of units. To deal with this scalability issue, we have developed an algorithm called the 
Unit Level Team Resource Allocation algorithm (ULTRA). Taking advantage of the structure 
inherent in the target selection problem, we are able to obtain target selection strategies resulting 
in team objective function scores that are on average within 5 percent of the global team optimal 
strategy. 

Task II.C.3.2.2(b) – Using Non-zero-sum Non-cooperative Game Theory to Represent 
Adversarial Impact 
Status: Completed 

In a military conflict, the adversary’s target selection strategy often strongly impacts the final 
outcome. Game theory provides widely accepted tools and solution methods for solving this type 
of competitive engagement. In particular, we employed the Nash equilibrium, in which neither 
team has an incentive to unilaterally deviate from a given set of target selection strategies. By 
applying the Nash strategy to the game theoretic model given in Task II.C.3.2(a) and using an 
iterative, ULTRA based Nash solution search we are able to quickly find approximate Nash 
strategies with accuracies exceeding 95% when compared to the strategies obtained by 
exhaustive search. The speed of the ULTRA process allows for real time implementation of the 
target selection algorithm in either open loop or feedback form.    

Task II.C.3.2.2(c) – Cooperative Teams Operating in the Presence of an Adversary 
Status: Completed 

It is well known that a Nash strategy is optimal only when the adversary is intelligent and also 
using a Nash strategy. Game theory cannot predict the outcome of an engagement in which non-
Nash strategies are employed. However, we have shown that in target selection type problems, a 
team using Nash type strategies has a distinct advantage over an equivalent force using other 
types of naïve, non-game theoretic strategies, such as random or greedy. On average Nash target 
selection strategies have proven to be the best strategy to use when faced with an adversary, 
regardless of that adversary’s target selection methodology.  

Task II.C.3.4.2(c) - Estimating Intent of the adversary 
Status: Incomplete, planned for 2004-2005 

The approach for target selection that we employed necessitates also estimating the enemy’s 
target selection strategies. The question that remains to be addressed is: How good is this 
estimate and how can it be improved?  We have started working on a procedure to use data 
obtained from the battlefield to assess our estimate of the enemy’s intent and improve on it. We 
had planned on working on this problem in the year 2004; however, the termination of MICA 
will render the status of this task as incomplete.  

3.4 CPPP Development 

SOW-II.C.3.3.2 (c) Biomimicry of Social Foraging for Cooperative Search/Engagement. 
Statement: The following aspects of biomimicry of social foraging will be studied in the 
proposed work:  
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Social Foraging Strategies: The utility of further development of the social foraging metaphor 
will be explored;  

Optimal Coordination Strategy Design: An Evolutionary Perspective. 

Progress:  

[Status: Complete.] Social foraging behaviors observed in nature are studied extensively. The 
focus are on biomimicry of several organisms including two kinds of bacteria (M. xanthus and E. 
Coli) and one kind of insects (bees). We construct and compare models representing different 
social foraging strategies, based on which different analogous implementable strategies for 
groups of UAVs are developed. Theoretical analysis is performed on these strategies and 
different implementations are evaluated with OEP testbed. 

 

SOW-II.C.3.2.2 (e) Stability Analysis of Swarms of Agents. 
Statement: We will investigate stability analysis of a group of vehicles by characterizing group 
cohesiveness and formation patterns as invariant sets and showing that even in the presence of 
communication delays, cohesion/pattern formation can be maintained. 

Progress: [Status: Complete through Year 2.] We refer to all groups of cooperative entities as 
“swarms.” Swarms with first-order dynamics are investigated first and the impacts of different 
environment profiles and different agent interactions on swarm stability are studied. Then we 
construct a more sophisticated swarm model with each agent having double integrator dynamics 
and analyze the stability of the swarms performing social foraging. We characterize swarm 
cohesiveness as a stability property and use a Lyapunov approach to develop conditions under 
which local agent actions will lead to cohesive foraging, i.e., agents entering certain invariant 
sets, even in the presence of imperfections characterized by uncertainty. It is shown that agents 
working in a highly coordinated fashion have advantages over agents with non-social behaviors 
and these advantages allow for cohesion maintenance, appropriate team dynamics, and hence 
mission success. We also model other imperfections like limited sensing capability in the system 
and investigate their impacts on the swarm stability. The effect of communication delays, which 
is another type of imperfection, is planned for Year 3. Stability analysis of formation patterns is 
also in the future plan. 

3.5 CPPS Development 

Task 1: Real Time Robust Learning and Path Planning 
Progress: Incomplete. 

Developments: 

Utilize probabilistic cognitive maps with Bayesian updates to learn in a three dimensional 
environment. The learning process includes both uncertainty about target locations and also 
potential threats. This allows the vehicle to incorporate both known and suspected (e.g. human 
commander’s intuition) information about the environment while at the same time allowing for 
updates due to sensor or other information received as the dynamic environment changes. This 
allows a single vehicle to plan where it is best to search. 



SHARED Final Report 

   22

Task 2: Hierarchical and Cooperative Learning and Planning 
Progress: Partially completed. Work still in progress. 

Formulated a Dynamic Programming algorithm in which the single step gain is based on 
likelihood of discovering targets, the safety of the planning vehicle in doing so, and a prediction 
of what effect other vehicles will have. Cooperation is achieved by intelligently predicting (based 
on what information is available) the actions of other vehicles.  

3.6 Architecture and VIA Development 

All subtasks (to the end of year 2) were successfully accomplished by Iterativity. An operational 
software application was developed, integrating all other modules and providing an automated 
interaction design module to dynamically manage the variable initiative interactions between a 
commander and the automated systems. 

Subtask 1. Management and Collaboration. 
Status: Complete 
Activities: 

 Manage Task 9 program, including staffing, planning, oversight.  
 Collaborate with others on SHARED project and other MICA team members.  
 Attend meetings, symposia, and demonstrations.  
 Demonstrate emerging technologies, present findings.  
 Prepare and submit yearly reports.  
 Track budget, labor, and spending; adjust as necessary.  
 Evaluate risk and performance at each phase; develop phase plans and task development 

efforts.  
Accomplishments: 

 Adhered to stated management process. No additional staffing required during the 
performance period. 

 Telecons, travel, etc. as required. Attended all TIMs and PMRs and participated in 
working groups and symposia. 

 Attended all TIMs, participated in demonstrations to Dr Tenney. Fully participated in VII 
and OEP working groups. 

 Published 1 conference proceeding (with demonstration), 1 book chapter, and 2 refereed 
journal articles. 2 additional submissions outstanding (IUI04 and CADUI04) 

 Every 6 months, full documentation and reports were prepared and submitted. 
 Spreadsheets and plans required no deviations except additions due to additional 

integration requirements to support integration of modules written in C++. 
 Full documentation, phase plans, risk assessments, subgoals developed at beginning and 

end of each of the 4 iterations that were performed during the 2 years of the program. 
Subtask 2. Model Requirements.  
Status: Complete through Year 2 (Iteration 4) 
Activities: 
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 Determine the information requirements for hierarchical planning.  
 Model resource allocation tasks and team dynamic subtasks provided by Area 2 

researchers, and those determined in SHARED tasks 1 through 4.  
 Provide additional modeling requirements to Area 2 researchers.  
 Develop user role models.  
 Develop models of cognitive constraints. 
 Incorporate scenarios and missions as available. 

Accomplishments: 
 Information requirements determined through research and interviews with SMEs; 

integrated into situation representation to provide basis for automated interaction 
generation. 

 Full domain model and situation generation mechanism developed for all tasks required 
of a single human managing a squad of 36 UAVs under the framework of the OEP. Tasks 
were iteratively expanded and evaluated. Full capability and responsibility model 
developed for variably capable agent sets, through the TCT and TDT levels. Manual plan 
modification and low level (CPP) flight planning by humans was scheduled for Year 3, 
and has not yet been implemented. 

 Full collaboration with OEP was undertaken throughout the program. Iterativity provided 
requirements for, and assisted Boeing with the simulator notification-event object design. 
Provided requirements for simulator provision of IPB data. 

 Complete for single user. Additional human users were intended to be added during Year 
3, and are not yet implemented. 

 Full interaction and presentation generation models were developed, incorporating human 
cognitive constraints in the various levels of the interaction design (e.g., information 
selection and chunking) and in the use of appropriate display heuristics (e.g., color 
coding, layout, attention direction mechanisms). 

 Full incorporation of all OEP information and scenarios up to final release; addition of 
experimentation functions to allow modification of scenarios.  

Subtask 3. Explore Techniques.  
Status: Complete through Year 2 (Iteration 4) 
Activities: 

 Explore techniques to automatically compose the content and form of interactions for 
human MICA participants to facilitate hierarchical multi-asset resource allocation.  

 Incorporate methods to enhance human contributions, including flexibility and 
creativity. 

 Incorporate methods to mitigate human deficiencies, including decision bias and 
cognitive limitations.  

 Investigate mechanisms for cognitive constraints to affect interaction design.  
 Investigate issues affecting human guidance to automation, including transfer of 

authority and collaborative decision tuning; determine risk and mitigation parameters.  
 Explore methods to monitor switching between modes of authority.  
 Determine system requirements, evaluate approaches, implement test systems. 
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Accomplishments: 
 Fully implemented and functioning software system developed to automatically 

compose dynamic user interfaces, in the context of a command situation involving 
multi-asset resource allocation with variably mixed-initiative collaboration between a 
single human commander, multiple teams of automata, and external planning agents. 

 Developed and incorporated mechanisms for fully implicit interactions for a non-
intrusive interface. Designed and implemented interaction seeding through user 
capabilities and interaction emphasis based on assignment. Provided 2/3 of variable 
interaction continuum, including manual replanning and planner parameterization 
control, but not including plan modification or manual plan creation, and with no 
research contributing to fully manual flight (planned for years 3 and 4). Multiple views 
of information provided to provide flexibility. 

 Situation calculations included to reduce decision bias. Embedded help and exploratory 
UI functions included. Experiments to demonstrate the efficacy of these designs planned 
for year three. 

 Interaction models designed to support appropriate fusing and partitioning of 
interactions to different views, and automated filtering of information in each view 
implemented to provide interface facilitation. 

 Embedded mechanisms for human guidance at all levels. Provided roles and capabilities 
system to support human activities and to provide access to other tasks of which the user 
is capable. Provided control over software planning agent parameters. 

 Developed mechanisms for human commander to transfer control to automation, and for 
the human to take control at any level at any time. 

 Performed 4 full iterative development cycles following the Unified Process. Iteratively 
performed requirements gathering, implementation, testing and evaluation for all 
iterations. 

Subtask 4. Develop Algorithms 
Status: Complete  
Activities: 

 Develop automated techniques to provide variable initiative interactions to human 
MICA participants.   

 Develop role-subtask heuristics.   
 Develop interaction algorithms to automate design of subtask interactions guided by 

usability knowledge.   
 Develop compositional interaction model, and develop properties and algorithms for 

individual interaction objects.   
 Incorporate findings from other subtasks into interaction model and algorithms.   
 Investigate interactions to support human interaction with and management of 

uncertainty and probability, and mechanisms for discrimination between estimation and 
feedback information.    

Accomplishments: 
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 Provided fully expanded capability and activity model to allow human users to monitor, 
modify, and perform the functions performed by automated planning reasoners. 
Provided integrated system with user-controlled selection of external reasoners. 

 Developed and implemented high level mechanisms to associate roles and 
responsibilities with interaction components that meet the needs of these roles and 
responsibilities. 

 Developed and implemented operational software that responds to interaction needs in a 
situation to fully automate the design, creation, and presentation of facilitative user 
interfaces. Incorporated state of the art usability knowledge at all hierarchical levels of 
interaction and presentation models. 

 Designed, developed and implemented object-oriented hierarchical interaction model 
that is able to self-compose consistent and usable interactions to meet the demands of 
the situation. 

 Full development iterations were performed on the situation, the interaction, and the 
presentation models to incorporate research developments. 

 Designed and implemented mechanisms to represent location uncertainty, identification 
uncertainty, status uncertainty, and modeled and demonstrated mechanisms to facilitate 
human understanding of this information. Provided implicit interactions throughout with 
immediate and discriminable feedback at all levels. 

Subtask 5. Advanced Methods.   
Status: Complete through Year 2 (Iteration 4) 
Activities: 

 Investigate decision theoretic and game theory methods for task decomposition and 
allocation.   

 Investigate interaction criteria for spatial, temporal, and predictive planning information, 
and visualization and modification of automata goals and plans.   

 Investigate mechanisms to provide flexible team composition and re-organization.   
 Investigate unpredicted advancements.  

Accomplishments: 
 Year 1 system provided task decomposition through the situation model. During 

Iteration 3, task decomposition was transferred to the TDT modules. Allocation was 
considered throughout as a TCT and TDT function, although Year 3 plans included the 
inclusion of the ability for commanders to fully perform or modify TCT and TDT-type 
planning. 

 Designed and implemented interaction design model for visualization, information, 
specification, planning, and analysis activities at the squad, team, and UAV levels. Year 
3 plans, which were not performed, involved full control of automata plans by human 
commanders. 

 Designed and implemented fully operational software to provide single human 
commander control over a squad of UAVs in a varying battlespace, and provided usable 
mechanisms for interaction with and understanding of the behavior of multiple software 
planning agent. 
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 All unpredicted advancements at each iteration were included in that or subsequent 
iterations. 

Subtask 6. Experimentation.   
Status: Complete through Year 2 (Iteration 4) 
Activities: 

 Perform integrated software functionality and performance experiments.   
 Develop basic presentation models for one interaction device, and implement mechanism 

for experimentation.   
 Develop small supporting battle space and planning scenarios, if necessary.   
 Conduct various functionality, tradeoff, and cognitive performance evaluations, and 

incorporate findings into ongoing research.   
Accomplishments: 

 Evaluations (functional, performance, and adherence to guidelines) were planned into and 
performed during each iteration of the software. Results of the previous iteration’s 
evaluations were incorporated into development processes for the next iteration, although 
incorporation of Iteration 4 evaluation improvements has been performed since the 
program has been terminated and no Iteration 5 is forthcoming. 

 Fully functioning interaction models were developed, tested, improved, and implemented 
within the functional SHARED system. Additional functions were added during Iteration 
4 to facilitate experimentation with external modules. 

 All iterations of the SHARED domain and situation models adhered to the battlespace 
scenarios provided by the OEP. Domain semantics were improved and made richer 
during all iterations. 

 Each iteration involved integrated analyses of functionality, risk and benefit, 
performance, and usability, and included planned development based on the results of 
these evaluations. 

Subtask 7. Integration.   
Status: Complete through Year 2 (Iteration 4) 
Activities: 

 Develop domain dependent implementation and integrate with other SHARED 
components.  

 Integrate with other program efforts.  
 Develop interface to domain and simulation models.  
 Provide software demonstration of interactions for commanders and operators involved in 

managing a low number of small teams; provide extensions to accommodate more (5-10) 
and larger (20-30) teams.  

Accomplishments: 

 A full domain model was developed and integrated with all SHARED components and 
the OEP.  

 A domain-independent AID system was also developed and implemented.  
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 Participation in working groups (particularly OEP), full collaboration with other 
SHARED team members via telecon and regular in-person meetings.  

 Full interfaces between the Situation Representation (implemented in Java) and the OEP 
simulation were developed and tested for each iteration of the OEP. All external planning 
modules (TCT, TDT-OSU, TDT-Pitt, CPPS) were provided with full Java to C++ 
interfaces, and were fully integrated in Iteration 3. The CPPP was written in Java from 
Iteration 2. 

 Demonstration of SHARED software were available at the end of each iteration up 
through Iteration 4. Demonstrations were given or available at each TIM and PMR. All 
versions of SHARED since Iteration 1 have included the ability to manage 36 UAVs in 
up to 36 individual teams. 
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4 Accomplishments and Achievements 

This section summarizes the accomplishments and achievements of each research group. 

4.1 TCT Accomplishments 

The major accomplishments of TCT are as follows:  

A Task Hierarchy architecture for SHARED was developed and is presented in the following 
figure. 

 
Figure 4.1 Position of TCT module in SHARED 

 
Figure 4.2 Examples of Task Decomposition 
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The “subsumption” architecture was not entirely adopted but follows subsumption concepts, 
although various aspects are common.  

Aspects of TCT, as it is presently within SHARED, are: 

 Basic assumptions, specifying core tasks, duration, and resource depletion. 

 Utilizing an Interactive Rule Base in a Control System 

 Probabilistic Resource Allocation and Scheduling with Depleting Resources 

 Evaluating Adversarial Resource Allocation. 

4.1.1 Basic Assumptions: 

The basic assumptions are that the regions of interest are concentrated for both sides (Called 
Areas), that these Areas are at known locations, have known targets existence probabilities and 
capabilities. 

It is also assumed that we have probabilistic knowledge of pop-up threats between areas. 

The basic Task Planning will generate a series of stages. In each stage, the UAVs will be 
allocated to perform a mission. Allocation of the UAVs and the risks and returns involve 
calculation a series of formulae based on the above assumptions. The timing formulae are given 
below. 

1) Time for UAVs to fly from point X to point Y: 

ρ

ρ

Enn

E
v
dt
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XY
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where tXY is the time for UAV to fly from X to Y, 

d is the direct distance from X to Y 

v is the average velocity of UAVs 

nX is the number of UAVs starting from X (initial number) 

nY is the number of UAVs at point Y (survived number) 

E is the “Easiness Coefficient”, which specifies how easy it is for UAVs to fly from 
X to Y. [ ]0,1E ∈  where 1 indicates the easiest and 0 indicates that is the most 
difficult. 

[0,1]ρ ∈  is the time priority coefficient, which denotes how much the commander 
cares about the time, 1 means the time is the most important for the mission, 0 mean 
the time is not as important as the number of survived UAVs., i.e., UAVs may find a 
far and safe way to get to the destination. This parameter represents a simple relation 
between the time and the number of survived UAVs 

Also  
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where D is the difficulty coefficient, which presents the how hard for UAVs to fly 
from X to Y, [ ]1,0∈D  0 presents the easiest and 1 presents that is very difficult. 

Rn  presents the number of defense weapons of the Red on the road  

k is the engage coefficient which presents the efficiency of blue UAVs to defend 
or/and fight back the red weapon. For blue, k is the higher the better, which 
determined by the UAV quality and the weapon type it carries. 

f(.) is a increasing function: )1,0[]0[ →∪+R   

2) Time for UAVs to destroy certain number of targets: 
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where tdestroy is the time to destroy certain number of targets, 

nT is the number of targets, 

nUAV is the number of UAVs engaged in destroying 

pdestroy is an indicator of satisfying probability of destruction, which means that if the 
destruction reaches the value, the mission finishes. 

pWT is the destroy probability of UAV to target with one attack 

[.] is the Gaussian function, [x] means the smallest integer not less than x 

tattack is the least time between two rounds of attacks of UAV, which is the fixed 
value 

we also have  
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where lg  stands for the base ten logarithm and log  is as given by the relationship 
shown. 

3) Time for UAVs to search a given area: 
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where searcht  is the time to search certain area,  

Sarea is the area to be searched, 

nuav is the number of UAVs engaged in search 

v is the average velocity of UAVs 

wsensor is the average width of sensor, so (v*wsensor) presents the area searched by one 
UAV is a unit of time 

ntarget is the number of targets (probably) found in the area 

t0 is the least time for a UAV to confirm a target, including the time to go back to 
target, recon again and continue to search area 

dtarget is the density of targets, which means the estimated number of targets existing 
in a unit area 

4) The number of targets can only be estimated. This is based on the area to be searched, it is 
given by: 

ettareaett dSn argarg ×=  

The timing formulae, as given above, are fairly obvious and the approximations are evident. 
However, resource allocation and scheduling decisions have to be based also on some 
intangibles, related to the importance a commander attaches to certain issues. We attempt to 
quantify three variables: 

• Average Risk related to an Area 

• Attack Priority of an Area 

• Information Value of an Area 

We provide simple formulae for each of the above three variables: 

• “Average Risk” for each area  ( jR ) 

rjl denotes the max range of the targets in the thl  type 

2

1
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mja: the number of targets with air defensibility in the thl  area 

[0,1]α ∈ : the variable shows the repairable capability of a UAV. The smaller α  is, the 
stronger the repairable capability of a UAV 

pkl  and pdl are the kill-probability and the damage-probability 
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• “Attack priority” of each area ( jA ) 
djl: the distance between the thj  Red area and the thk  blue area 
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n: the number of targets in the thj  Red area 

1

p

j jl
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• “Information Value” of each area ( jI ) 
Ijl: the value of information for the thl  target type and ( )+∞∈ ,1jlI  

p: the number of target types in the thj  area 

Variables defined in current specific case (CP1.0) are: 

The number of the Blue airbase is p=1. 

The dimension of white areas is q=1. 

ljx  is not scheduled if g2j=0 (the total number of SSMs in the thj  area)  

Only three kinds of weapons are assigned to UAVs in the specific case. They are sub-munitions, 
bombs and missiles. 

Parameters that can be varied in the special case: 

1. The number of the Red areas, m 

2. The number of available UAVs of each type 

3. The start and end of mission times 

4. The IPB of the Red areas, for example the number and distribution of the Red targets in 
each area, the locations of the Red areas and the target types in each area. 

5. The number of the Blue base can be more than 1. 

6. The dimension of white areas. 

4.1.2 Utilizing an Interactive Rule Base 

Preliminary scheduling relies on prioritizing the different tasks that UAVs need to accomplish. In 
SHARED, we provide a Rule Base (derived from the given Rules of Engagement) that can lead 
to scheduling priorities. We have attempted to make the Rule Base as generic as possible so that 
it can be used in different situations and scenarios.  

The Rule Base assumes there are Type A operations (operations to clear areas of communication 
and sensing capability) and Type B operations (operations dedicated to clearing areas of high 
level firing power). We then give the following simple low-level Rules: 

We consider a finite number of relevant locations, and a finite number of operations that can be 
performed at those locations. A set of rules was selected based on the Rules of Engagement and 
definition of CP 1.1 and general considerations. They continue to be under review. The rule base 
we are using in TCT is given by, 
Rule 1: Type A operations, if any, will always precede type B operations. 
Rule 2: Type B operations, follow type A operations in areas cleared due to type A. 
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Rule 3: No operations in NNC (Neutral Northern Country) would be done unless required by the commander. 

Rule 4: No type A operations in area with no SSM unless needed for safety in other area. 

Rule 5: Guard Blue Base all the time.  
A Task Matrix and Stage Generator were defined to automatically generate the multi-stage plan 
for a mission. 

Assume that there are n types of tasks in one mission, they are [ ]T
ni xxxx "" ,,, 21 , where i 

denotes the thi  task type, such as SEAD vs. IADS, Destroying SSM, etc. Furthermore, xi 
represents whether there is the thi  task type in the mission. If xi =0, there is no thi  task type in the 
mission, otherwise xi equals 1.   

Assume the number of the Red areas in the mission is m and the number of the Blue airbases is 
p. Also in the battlefield, there is some danger, or high-risk white areas, where no tasks would be 
carried on in those areas unless the commander requires. We define the set of these areas as 
White Area and the dimension of this set is q.  Then with these, we define the tasks as follows: 

In the thi  task type, according to the areas in the mission, ],,[ )(21 pqmiiii xxxx ++= " ( 1,..., 1i n= − ) 
indicates the vector for the thi  task type in the areas. And ijx  denotes the variable of the thi  task 
type in the thj  area. Furthermore, if there is a thi  type task in the thj  area, 1=ijx , otherwise 

0=ijx . Therefore, we can see that xi = 0 ( 1,..., 1i n= − ), if and only if 0ijx =  for 
j=1,2…(m+q+p). Hence the following task matrix can be defined, 
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In order to illustrate the sequence rules, the following functions are defined.  

⎩
⎨
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jiff ij
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),(  

which indicates the required status of the thi  task type in the thj  area.  

),( jiggij = , which denotes the number of associated targets of the thi  task type in the thj  Red 
area (j = 1,…m). For example, if xij represents the task, Destroying SSM in the thj  Red area, then 
gij is the assumed total number of SSMs in the thj  Red area. 

The stage is defined as a period of time in the mission, during which no more than one kind of 
task type can be executed in the Red areas. Furthermore, we define is  to indicate whether the 

The Red areas White Area The Blue areas 

Areas

Task 
Types 
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stage associated to the thi  task type is empty or not. is = 1 represents that there is a nonempty 
stage for the thi  task type that need to be done in the Red areas, otherwise si = 0. More clearly, if 
the stage for the thi  task type has been finished or xi = 0, is =0. Without loss generality, we 
assume that xi (i=1,2…n-1) will not be executed, unless xk (k=1,2….i-1) has been finished or 

0=kx  (k=1,2….i-1), i.e. is = 0. Moreover, nx  is one task type that is carried on in all stages.  

 

SHARED can use the Rule Base as is, but asks the Commander to confirm the rules that it 
specifies, or, the outcome of those rules, that is the preliminary schedule.  

 

The use of rule bases within a real-time control system is a somewhat new phenomena and some 
results have been developed in the context of fuzzy control theory. However, our development 
here is unique and new in that it pertains to prioritizing control actions, thus specifically a timing 
sequence. We believe this to be an open research area to be addressed. 

4.1.3 Probabilistic Resource Allocation 

An algorithm dealt with the heterogeneous resources allocation is developed in TCT. This 
algorithm is mainly based on proportional control algorithm. The following variables are 
considered in the allocation, such as Number of targets, Air defensibility of targets, Target status, 
classified as potential, known and unknown and information ability of targets, like 
communication capability. 
• “Total payoff” for each area ( jP ) is 

Known targets:     unknown targets:  Potential targets 

kn1> c 0un ptc c≥ ≥ > . vjl is the score for each target. Then the “total payoff” in the jth area is 

calculated by, 
• Preliminary resource allocation is given by:  
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where m  is the number of regions, jβ  is a tuned parameter for future use. UAV
jχ can be looked as 

a variable represented the forecasted demand in the battle, since it reflects the comprehensive 
target information in each area. Using proportional approach to satisfy the estimated demand, the 
preliminary resource allocation in the TCT agent is obtained as follows. For the UAV team in the 

thj  area, the number of UAVs is: 
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where SWn , SSn , SCn , LWn  and LCn  denote the number of UAVs in type Small Weapon, Small 
Sensor, Small Combo, Large Weapon and Large Sensor, respectively. Therefore, five different 
types of UAVs are allocated into areas according to this percentage. 

 

4.1.4 Evaluating Adversarial Resource Allocation 

We have considered the adversarial aspect of resource allocation by defining a criterion and two 
new parameters. The criterion we introduce is “Force Value” (to be defined below) and the new 
parameters are “aggressiveness” and “mobility”. These parameters are used as subjective 
quantitative indicators of the (Blue) Commanders evaluation of the Red strategy. The results of 
the resource allocation are shown as following.  

 
Figure 4.3 Experiment on Changing Target Distribution 

 

 
Figure 4.4 Experiment on Changing Assessment of Red Intentions 
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The upper two figures are the allocation results with the specific target distribution shown in the 
upper left figure. The right two figures are the allocation results with different values of mobility 
and aggressiveness. Force value is defined here in order to evaluate the strategy of the allocation 
results. It depends on the number of UAVs and the types of UAVs in one team. The force value 
is defined as follows: 

∑
=

=
LW

SSl
jljl

B
j VnF  

where },,,,{ LWLSSCSWSSl ∈ and Vjl denotes the predefined force weight for the thl  type 
UAVs. For example, Vss should be less than Vsc. (SS: Small Sensor; SW: Small Weapon; SC: 
Small Combo; LS: Large Sensor; LW: Large Weapon). Force Value is a mapping from five 
different kinds of UAVs to positive real number. Due to different types of resources in a team, it 
is hard to describe how much the strategies of resource allocation change in one team. So Force 
Value is defined to represent the strategy of resource allocation in a team. The change of the 
strategy versus the change of the assessment of Red intentions is shown in Fig. 4.4. 

4.2  TDT-Hierarchical Accomplishments 

The major accomplishments of TDT-Hierarchical are as follows: 

4.2.1 P-Controllers 

A new theory has been developed for the control of teams of cooperating entities in the presence 
of intelligent adversaries using a game theoretic framework involving non-cooperative static 
Nash games and mixed strategies, together with feedback control principles, using nonlinear 
dynamic models. A P-controller, where P stands for proportional, has been designed to control 
the optimal salvo size of blue such that total number of platforms and total number of weapons 
of blue forces remaining at the end of the battle are maximized, while those of the adversary are 
minimized.  

4.2.2 TDT Multi-Level Architecture 

A Game Based hierarchical TDT architecture has been developed, as shown figure below. 
This was accomplished by the innovative integration of heuristic-based upper level planning 
(multi-stage UAV-target assignment) and event-based lower level game, which considers the 
collateral damage effect. After reading available information of some UAVs from the situation 
model, TDT first makes a decision that whether the UAVs should to get refueled, fly back to 
base or, are available for a mission. So far there are four types of mission: SEAD, Guard Blue 
Base, Close Air Support and Interdiction. Suppose the mission assigned is SEAD, TDT will be 
determining UAV/Target pairing assignment with given weapons and targets information. For a 
determined UAV/Target, play a non-zero-sum non-cooperative game. For other missions, the 
procedure is similar.  
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Figure 4.5 TDT Multi-level Architecture 

 

A heuristic based upper level planning strategies has been developed. TDT acts as a dynamic 
team controller in real time with adversaries. The idea of the hierarchical structure originally 
comes from the trajectory-tracking problem in adaptive control and also it is the situation in the 
real world. In a word, the upper level planning is an optimizer that generates a team plan 
involving target assignment and attacking scheduling for various types of missions, while the 
lower level game orientated controller helps team members to track this plan. 

Most of the work that has been done falls into the mission of SEAD, which is most difficult and 
of greatest importance. In the upper level planning for SEAD, the problem is defined as to assign 
the possible targets to each UAV (weapon/sensor) in the team in an optimal sense as well as to 
arrange the tasking (attacking/sensing) order under the timing constraint in real time. The results 
from the planer should tell each UAV a plan about which targets to attack and what order to 
follow.  

In order to improve the attacking efficiency, A 3-step approach has been proposed: 1) Target 
characteristic analysis, includes target grouping according to the geographic distribution and 
identification of the most critical targets within the groups; 2) UAV Sub-team Formation, during 
which UAVs is divided into subgroups based on the result of target grouping; 3) Multi-stage 
Mission Strategy, in which there are two stages. In stage 1, the focus is on the critical targets in 
the group. During stage 2, all of the UAVs in the team work cooperatively to remove all possible 
targets. 

The research work on the first two steps has just been initialized and the major work completed 
is about the multi-stage mission strategy. In stage 1, the critical target within the group will be 
attacked, and the heuristics and experience will be applied such that an attacking sequence is 
found and the UAV safety during this stage is maximized. Usually, minimum number of targets 
other than the critical targets will be attacked in this stage, and the target is attacked only when it 
is necessary to increase the security level for UAVs. The UAVs to attack are chosen based on the 
match-up principle, where the most suitable UAVs will be assigned. 
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After the most critical targets have been removed from the group, in stage 2, all of the UAVs will 
cooperate to attack the remaining targets. And the problem in this stage has been narrowed down 
and is only to find the target assignment and the attacking order for each UAV. A weighted 
shortest path algorithm has been designed and implemented. In the algorithm, each UAV has its 
own decision-making capacity to choose a target and the decision-making has been 
decentralized. In brief, the algorithm starts with a given UAV sequence. At the beginning, all the 
targets are in the unassigned target set. And the UAV is picked one by one following the order of 
the initial UAV sequence, and then this UAV will make its own decision on which target to 
attack from the unassigned target set. The target that has been assigned to some UAV will be 
removed from the unassigned target set. This process will be followed until all of the targets will 
be assigned. However, in the case when the number of the UAVs is less than that of targets, 
when all of the UAVs have got at least one target assignment, a simple method based on the 
distance to travel is used to estimate that which UAV will finish its current task first and be the 
next available UAV ready to choose one more target. After all of the targets have been assigned, 
each UAV in the team will have a list of targets to attack with the specified order. However, this 
result is dependent on the initially given UAV sequence, and clearly a different sequence leads to 
a different result. Here to evaluate the effect from the UAV sequence, we have proposed the 
following fitness function for the team: 

1

M

Team i i i
i

J E p m t
=

⎧ ⎫= ⋅ ⋅⎨ ⎬
⎩ ⎭
∑  

where TeamJ  is the expectation of the summation, M  is the number of the targets; ip  is the 
probability of being killed for the target i , which depends on which UAV that target i  has been 
assigned to; and im  is the thi  target’s value that indicates its relevant importance; it  is the time 
that it takes that target i  to be destroyed by some UAV. With this fitness function for the team, 
GA algorithm is applied to find the best UAV sequence, leading to the maximum of TeamJ . And 
the assignment result associated with this best sequence is considered as the final result. 
Furthermore, it is worth noting that the result also depends on the criterion on which each UAV 
makes its own decision of which target to attack. Here is one possible strategy. Each UAV makes 
its own decision as if it is the only UAV that will attack all of the unassigned targets. To be 
consistent with the team objective TeamJ  above, each UAV will search for an attacking order such 
that the following objective function is minimized. 

1

jM
j j

UAV i i i
i

J E p m t
=

⎧ ⎫⎪ ⎪= ⋅ ⋅⎨ ⎬
⎪ ⎪⎩ ⎭
∑ . 

Here the subscript UAV  indicates that it is the objective for one UAV; jM  is the number of the 

unassigned targets when UAV j  makes its choice; j
ip  and j

it  have the same meaning, but with 
respect to UAV j . It can be seen that the objective is similar with the team objective, but the 
variables have slightly different meanings. With this objective, in some sense, each UAV will 
solve a Traveling Salesman Problem (TSP). The UAV will choose the very first target from the 
resulting attacking sequence as its next target. As a summary, the weighted shortest path 
algorithm in stage 2 has two levels of operations. In the lower level, decision-making has been 
decentralized and each UAV searches its best attacking scheme and pick the very first target one 
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by one until all the unassigned targets have been assigned. In the upper level, GA algorithm has 
been applied to find such a UAV sequence that leads to a better team objective TeamJ .  

Here we give some arguments for the described strategies in TDT module. The 3-step approach 
is proposed for the purpose of increasing the UAV safety and the attacking efficiency. Without 
those critical targets, there will be less possible threats to the UAVs. During stage 2, the team 
objective is created this way because of the time issue and the most important targets are 
preferred to be destroyed with less time. Also, the decentralized decision-making is introduced 
because the dimension of the centralized optimization problem could be huge when the number 
of UAVs and targets is big. Here the cooperation within the team is emphasized such that a 
system behavior in an optimal sense will be achieved. Furthermore, this decentralized scheme is 
more adaptive to the dynamic battlefield with uncertainties, especially when there appear more 
targets or some of the UAVs are damaged during the mission. The centralized result may vary 
largely from the variation of the battlefield, but with decentralized algorithm, only the next UAV 
who will make its own decision will be affected.  

An event based lower level game-oriented controller has been developed. For a given 
UAV/Target pair, a non-zero-sum non-cooperative game problem is solved in the lower-level to 
determine an optimal feedback controller *b

mu  for Blue force, which is comprised of the optimal 
salvo size *b

mα , decoy deployment variable *b
mβ  and cooperative jamming variable *b

mγ . As shown 
in the diagram below, the objective function for Blue force consists of weighted cost of being 
attacked , ( , )B risk b r

m m mJ u u , weighted cost of attack , ( , )B attack b r
m m mJ u u  and cost of collateral damage 

, ( , )B collateral b r
m m mJ u u . In the mean time, the performance index for Red force includes weighted cost 

of being attacked , ( , )R risk b r
m m mJ u u , weighted cost of attack , ( , )R attack b r

m m mJ u u . Both Blue and Red try 
to minimize their own cost, which involves the other’s decision variable. The solution for each 
UAV/Target pair is output to the UAV to destroy maximum enemy with minimum cost. 

 
Figure 4.6 Diagram for Computing Lower-Level Controller 
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4.2.3 AI-Based Task Assignment 

Several artificial intelligence based centralized target assignment algorithms for teamed 
UAVs have been developed. Task assignment is one of the core steps to effectively exploit the 
capabilities of cooperative control of multiple Uninhabited Aerospace Vehicle (UAV) teams. 
Task assignment is an NP-complete problem. In this project, we present several new task 
assignment algorithms that are based on the principles of artificial intelligence (AI), such as 
fuzzy logic, genetic algorithm and particle swarm optimization etc. We discuss the adaptation 
and implementation of the AI search strategy to the task assignment problem in the cooperative 
control of multiple UAVs.  

A new theoretic approach to fuzzy noncooperative Nash games has been developed. 
Systems that involve more than one decision maker are often optimized using the theory of 
games. In the traditional game theory, it is assumed that each player has a well-defined 
quantitative utility function over a set of player’s decision space. Each player attempts to 
maximize/minimize his/her own expected utility, and each is assumed to know the extensive 
game in full. At present it cannot be claimed that the first assumption has been shown to be true 
in a wide variety of situations involving complex problems in economics, engineering, social and 
political sciences due to the difficulty inherent in defining an adequate utility function for each 
player in these types of problems. On the other hand, in many of such complex problems each 
player has a heuristic knowledge of the desires of the other players and a heuristic knowledge of 
control choices that they will each make in order to meet their ends. In this project, we utilize 
fuzzy set theory in order to incorporate the players’ heuristic knowledge of decision making into 
the framework of conventional game theory or ordinal game theory. We define a new approach 
to N-person static fuzzy non-cooperative games and develop a solution concept such as Nash for 
these types of games. We show that this general formulation of fuzzy non-cooperative games can 
be applied to solve multi-decision making problems where no objective functions are specified. 
The computational procedure is illustrated via application to a multi-agent optimization problem 
dealing with the design and operation of future military operation. Ref. [OSUTDT-6] 

4.2.4 Extended Bidirectional Associative Memory 

Extended Bidirectional Associative Memory has been developed for TDT and CPP 
Applications. We extended the Basic Bidirectional Associative Memory (BAM) (Ref. 12, 13) by 
choosing weights in the correlation matrix, for a given set of training pairs, which result in a 
maximum noise tolerance set for BAM. We prove that for a given set of training pairs, the 
maximum noise tolerance set is the largest, in the sense that this optimized BAM will recall the 
correct training pair if any input pattern is within the maximum noise tolerance set and at least 
one pattern outside the maximum noise tolerance set by one Hamming distance will not converge 
to the correct training pair. This maximum tolerance set is the union of the maximum basins of 
attraction. A standard Genetic Algorithm (GA) is used to calculate the weights to maximize the 
objective function which generates a maximum tolerance set for BAM. We have developed a 
BAM model of CPP. The optimization based training strategy was successfully implemented a 
CPP application. Feedback sensing was introduced as another extension of BAM in the context 
of the CPP application. Both extensions as well as the basic BAM were implemented in C++ 
simulation software. Simulation results suggested that the optimization based training strategy is 
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very promising in designing the training weights, and BAM appears to be promising for future 
applications of military Hierarchical Cooperative Control. 

4.2.5 Cooperative Jamming Strategy 

A Cooperative Jamming Strategy has been developed to make use of the network-Centric 
paradigm by exploiting multiple platforms to gain geometric, physical and tactical 
advantage. Assume that the Blue force consists of weapon UAVs and sensor UAVs; the Red 
force consists of SAMs and radars (EW radars, SAM search radars and SAM fire control radars). 
Each Blue UAV has a jammer. The Blue jammer deployment strategy has been developed such 
that Blue UAVs are protected from being detected by Red radars. Because Red radars can 
network, the ideal situation is to jam all Red radars. However, due to the limited Blue jamming 
power, sometimes it is impossible to fulfill the ideal situation. Thus our goal is to jam as many 
Red radars as possible. This is an exhaustive search problem and the computation quantity 
depends on the number of both Blue jammers and Red radars. A suboptimal static jamming 
strategy with less computation quantity is developed as the following: Suppose that the initial 
states of all jammers are closed. In order to protect Blue UAVs from the Red attack, a 
conservative strategy is used: only the jammers loaded on the UAVs which cannot be reached by 
all of the Red weapons are regarded as available. The information whether a Blue UAV has been 
painted or not is known, but it does not know it is painted by which Red radars. The flowchart of 
the algorithm is given below and the details are followed. 
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Figure 4.7 Flowchart for Cooperative Jamming Strategy 

 

Step1: Guess the aim of each Red radar. It is supposed that each Red radar can track only one 
target Blue UAV at a time. It is possible that several radars can simultaneously track the same 
target UAV. For the purpose of jamming a radar, we must know which target UAV this radar is 
currently tracking. Although we cannot know exactly which UAV is tracked by which radar, the 
probability of detection that a given UAV is tracked by a certain radar can be estimated 
according to the UAV type, radar type and the distance between the target UAV and the radar. 
Suppose that there are N jammers and M radars. Denote Pij as the probability that ith radar could 
successfully detect the jth UAV, i=1, 2, … , M and j=1, 2, … , N. Determine each Red radar’s 
target with the maximal detection probability criterion, that is to regard the j*th UAV as the ith 
radar’s target if *

* ,      (1   and  1 )ijij
P P j N j N>= ≤ ≤ ≤ ≤  ;  

Step2: Sort the Red radars. Assign every Red radar a weight which is a function of radar type, 
target UAV type, target UAV value and detection probability. This weight describes the radar’s 
importance. For example, for the same type radars, the radar with large detection probability and 
large target UAV value has higher weight. Sort the radars by their weights. The larger weight the 
radar has, the earlier it should be jammed;  
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Step3: Assign jammers for each Red radar that can be jammed by the current available jammers. 
In order to jam as many as possible radars, the proposed principle is to jam a radar using as little 
jamming power as possible:.  

Step 3.1: For the thi  radar, we first calculate the jamming signal ijJ of each available 
jammer (indexed as j) to this radar.  

Step 3.2: If all available jammers are used, but still cannot jam a single radar, i.e. 
J S≤∑ , then this radar is selected out, and marked as cannot be jammed.  

Step 3.3: Otherwise this radar can be jammed, continue the following steps:  

Step 3.3.1: Sort these available jammers in ascending order by its contribution 
(jamming signal denoted as Jij), such that Ji1<=Ji2<=…<=Jin, n is the number of 
available jammers at the present time.  
Step 3.3.2: If the jammer with the largest jamming signal Jin can jam this radar (Jin 
> S), then we choose the jth jammer such that the (j-1)th jammer cannot jam the 
radar but the jth jammer can, ijJ S> , ( 1)i jJ S− ≤ . Mark this jammer as used. Note 
the number of available jammers decreases by one when a jammer is marked as 
used. 

Step 3.3.3: If the jammer with the largest jamming signal Jin cannot jam this radar, 
i.e. inJ S≤ , then we choose this jammer as the first one to jam this radar, and let 

inS S J= −  and 1n n= − .  

Step 3.3.4: Repeat step 3.3.2 to step 3.3.3 to select the other jammers for this 
radar until it is jammed. 

4.2.6 Cooperative Decoy Deployment 

A Cooperative Decoy Deployment method has been developed to maximize the total 
probability of survival of Blue UAVs. Assume that a UAV carries N identical decoys and W 
weapons (N and W are fixed), and plans to attack M targets in the attacking order T1 first, then 
T2, … and finally TM. The weapon number used to attack each target has been decided after 
salvo size computation. We developed a decoy deployment strategy such that the survival 
probability of UAV after attacking the M targets is maximized. This is an exhaustive search 
problem and the computation quantity depends on the number of both decoys and targets. The 
total number of possible deployment strategies is MN which can be very large for large M and N. 
In order to meet the requirement of real time application, a unit greedy suboptimal strategy is 
developed and consequently the search space is reduced to M*N. Suppose a UAV carries q-1 
decoys and the suboptimal deployment strategy for these q-1 decoys has been obtained using the 
unit greedy algorithm. If the UAV is given one more decoy, what is the new strategy? The ‘unit 
greedy’ here means to make the best use of each decoy. Keeping the original q-1 decoy 
assignment unchanged, assign the qth decoy to the target such that the total survival probability 
of the UAV after attacking the M targets is the maximum. Let q = 1 at first and obtain the 
optimal deployment strategy for the first decoy. Then increase q by 1 getting the suboptimal 
deployment strategy for the two decoys. Repeat the process until q = N getting the suboptimal 
strategy for all of the N decoys. 
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4.2.7 Experiments and Simulation Result of TDT-Hierarchical 

A software environment has been developed to test TDT in a simplified simulator which includes 
the AID, TCT, CPP and TDT. It can do multi-team & multi-mission simulations.  

The effect of deployment of decoys and jamming on the battle result was verified: after applying 
the decoy and jamming strategies, more blue assets (sensor UAV and weapon UAV) remain 
undamaged at the end of the battle, while more red assets (FCS and SAM) are destroyed.  

 
Figure 4.8 Simulation Result of TDT-Hierarchical Algorithm 

 

The effect of the commander’s priority ranking of collateral damage on the battle outcomes was 
verified: the higher the priority of collateral damage (that is, blue will try more effort to avoid 
shooting at the white objects), the more the red assets will survive.  
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Figure 4.9 Effect of Priority of Collateral Damage on Battle Outcomes 

 

4.3 TDT-ULTRA Accomplishments: 

The major accomplishments of the TDT-ULTRA team are described below: 

Accomplishment 1: Managing Scalability 

An important consideration in using a game theoretic approach at the TDT level is the 
dimensionality of the search space. Consider, for example, a team of N Blue units engaged in 
combat with a team of M Red units as illustrated in Figure 1. Assume that the units on each side 
are non-homogeneous, so that it would not be feasible to group them into a smaller number of 
sub-teams. A game theoretic approach will therefore need to examine all the possible 
combinations of target assignments (or control) options for units on one side against all units on 
the other side. For example, each blue unit has M+1 choices of targets consisting of M Red units 
and the no target choice. In that case, the Blue side will have ( 1)NM + options and the Red side 
will have ( 1)MN + options. Normally, these options are arranged in a matrix where the Blue 
options are represented as rows and the Red options as columns.  If the effectiveness of the 
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control options is assessed using objective functions ( , )BJ u v and ( , )RJ u v for the Blue and Red sides 
respectively, then each entry in this matrix will be a pair of real numbers { ( , )BJ u v , ( , )RJ u v } that 
correspond to the pair of options { ,u v } where u and v represent Blue and Red control variables, 
respectively. Table I illustrates the dimensionality of this matrix for several values of N and M.  

 
Figure 4.10 The target Assignment Problem 

A pair of control options { , }N Nu v will represent a Nash equilibrium solution if the following two 
inequalities hold: 

( , ) ( , )  for all possible Blue control options ;
( , ) ( , )  for all possible Red control options .

N N N
B B

N N N
R R

J u v J u v u
J u v J u v v

≥
≥

 

The TDT level in SHARED will allow the commander to examine “what if” scenarios by 
choosing different objective functions, or different weight coefficients in the same objective 
function. In particular, this would lead to different “what if” scenarios that a commander might 
want to examine about his guesses (or estimates) of the adversary’s objective functions. The 
different scenarios translate into different forecasted enemy intents, leading to different Nash 
solutions.  

Table 4.1 Dimensionality of the Target Assignment Game Matrix 
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M

Size of Game Matrix: 
( 1)NM + × ( 1)MN +  Size of Search Space 

4 3 256 × 125 332 10×  

8 6 6 6(5.76 10 )  (0.53 10 )× × ×  123.06 10×  

16 12 17 14(6.65 10 )  (5.82 10 )× × ×  3138.71 10×  
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As is clear from Table 4.1 an important issue that needs to be addressed in determining the Nash 
solution is scalability. An exhaustive search over the entire space of control options is feasible 
only if the number of units on each side is small. When the number of units on each side is larger 
than 6 or 7, the search space becomes too large and computationally not feasible to search within 
for the Nash solution. An efficient search algorithm called Unit Level Team Resource Allocation 
(ULTRA) that overcomes this scalability issue has been developed and implemented in the TDT 
level. Essentially, ULTRA takes advantage of the structure of the control options available to 
each side. For a given control option on one side, it first optimizes the objective function for each 
member of the team on the other side, and then iterates among the remaining members of that 
team by changing once and then twice their target assignments while keeping the remaining 
assignments fixed. These iterations will continue until an optimum team response is reached. In 
this sense, this algorithm shares some of the properties of the Hooke-Jeeves and the Rosenbrook 
search algorithms for function minimization. Once the team optimum response is determined, the 
roles of the two sides are interchanged, and the process repeated to determine the corresponding 
optimum team response for the other side. Fig. 2 shows a flow chart for the various steps in the 
ULTRA algorithm. In the next section additional details about the ULTRA algorithm are 
presented. 

 
Figure 4.11 Flow chart of the ULTRA algorithm
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Accomplishment 2: Development of ULTRA – An Efficient Search Algorithm for the Nash 
Target Assignment Strategies 

Nash strategy is often determined by successively calculating the reaction strategy of one team to 
a given action strategy by the other team. Convergence of this iterative process will lead to the 
Nash solution. Thus, each team needs to be able to calculate its reaction strategy to an action 
strategy by the other team. ULTRA is an algorithm that calculates Nash strategies efficiently 
even for teams with very large number of units.  

To illustrate how this algorithm works, let us assume that the action strategy space for team B is 
V  and a specific action strategy is v V∈ . The search for team A’s optimal reaction strategy is 
closely related to other similar combinatorial search problems such as the traveling salesman 
problem. While not exactly analogous, some of the solution approaches to the traveling salesman 
problem separate the complex combinatorial search into several smaller and simpler searches. 
Similar ideas are also employed in search methods for functions minimization such as the 
Relaxation Method, the Rosenbrock, the Hooke and Jeeves, and the Branch and Bound methods. 
ULTRA is an iterative algorithm. As a starting point, it assumes that each unit in team A is 
assigned an initial target. Let 0u  be the strategy vector corresponding to that choice. A typical, 
but not necessary choice is { }0 0,0,0...0u = . At iteration k, a modified strategy 1ku +  is then 
generated from ku according to a set of heuristics which insures that ( ) ( )1, ,k k

A AJ u v J u v+ >� � . This 

iterative process continues until no allowable modifications of ku  will yield a larger ( )1,k
AJ u v+ � . 

At this point the algorithm is assumed to have converged to the optimal reaction of team A to v� . 
The success of this algorithm then depends on the heuristics which govern the way 1ku +  is 
generated from ku . In some sense, this is similar to the Rosenbrock, and Hookes and Jeeves 
algorithms where a search for the optimum step size is performed separately along each of the 
directions of the search space.  Our target assignment problem is structured so that the units in 
each team must be assigned targets from an identical set of options. To take advantage of this 
structure, ULTRA generates 1ku +  from ku by allowing only a fixed number of changes to the 
targets of individual units, during each iteration k. Furthermore, this is to be done in an optimal 
fashion. This can be represented by a two stage “nested” optimization procedure. The algorithm 
must find both the units, as well as the corresponding changes to their targets, that yield the 
maximum increase in the team objective function. Mathematically, this two stage optimization is 
expressed as: 

( ){ }{ }
{ } { }

1 2 1 2, ,... , ,...,
max max ,

where 1,2,..., ,  1,2,...,
and , , ,

F s s sF

k
As s s u u u

i

i j

J u v

F N s N
s s i j i j i N j N

∈ ∈
≠ ∀ ∋ ≠ ≤ ≤

�

 

In the above expression, F is the number of units in team A that may have their targets changed 
at each iteration, and is  is the index corresponding to the unit whose target is being changed. So 
that the algorithm may generate the best possible assignments over a wide range of applications, 
we allow the coefficient F to take values from the set{1,2,..., }N . We refer to this coefficient as 
the degree of freedom of the algorithm. The value of F is typically chosen to balance the 
accuracy and speed of the algorithm. A high value of F will yield an accurate but slow result and 
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the lower the value of F the less accurate but faster the result will be. In fact, when F=N, 
ULTRA reduces to an exhaustive search algorithm. When the optimum values 1 2{ , ,.., }Fs s s and 
the corresponding optimum targets

1 2

* * *{ , ,...., }
Fs s su u u  are determined, the strategy at the next 

iteration is set at: 

1 1 2
*

1 2

, ,...
, ,...

k
k i F
i

i F

u i s s su
u i s s s

+ ⎧⎪
⎨
⎪⎩
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=

 

As an illustrative example, consider the target selection in a problem where Team A has N=4 
units and team B has M=3 units. We will illustrate how ULTRA is applied to obtain team A’s 
optimal response to a given action strategy of team B, and with a search that has a degree of 
freedom 1F = . The initial reaction strategy for team A is assumed to be { }0 0,0,0,0u = . At this 
stage, as mentioned earlier, this strategy is chosen arbitrarily (although there are methods for 
optimizing this choice). To find the next strategy 1u , the optimal 1s  in addition to the 
corresponding optimal 1su  must first be found. This is done using a search over the allowed 
subset of all possible strategies corresponding to a single target change. Mathematically, this 

corresponds to the optimization problem described above represented by ( ){ }{ }
1 1

0max max ,
s

As u
J u v� . 

Assume that the results of this search are that the optimal change is for unit 2 in team A to target 
unit 3 in team B. Then  

0
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That is, the strategy at the next iteration will be { }1 0,3,0,0u = . The two-stage optimization is 
then again repeated to find 2u , this time using the strategy 1u  as the starting point. Assume that 
this process is allowed to continue for several iterations and produces the following sequence of 
optimum strategy changes: 

{ }
{ }
{ }
{ }
{ }

1

1

1

1

1

* 2
1

* 3
1

* 4
1

* 5
1

* 6
1

4 1 0,3,0,1
3 2 0,3,2,1
1 2 2,3,2,1
3 1 2,3,1,1
1 2 2,3,1,1

s

s

s

s

s

s u u
s u u
s u u
s u u
s u u

= = ⇒ =
= = ⇒ =
= = ⇒ =
= = ⇒ =
= = ⇒ =

 

The process is stopped when it reaches an iteration at which it fails to produce a strategy which 
improves upon the previous iteration’s strategy. In the above example, this occurs at iteration 6 
(indicated by 6 5u u= ). We should note, however, that this does not imply that a global optimum 
is reached. The resulting strategy is optimal only in the sense that no single change of assignment 
to one unit in team A can produce a higher value of ( , )AJ u v .  If a globally optimal solution is 
desired, all units in Team A must be allowed to change their target selections at every iteration 
(i.e. F=N), which would then correspond to an exhaustive search.  

To illustrate the algorithm with a degree of freedom F=2, the two stage optimization will now be 
performed over four variables instead of two:  
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An example of a sequence of iterations is as follows: 
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Accomplishment 3: Open-Loop and Feedback Implementation of the ULTRA Controller 

For a given number and type of units on each side, their values (or worth), and the probabilities 
of kill against them, ULTRA calculates the optimum (in the sense of Nash) target assignments 
for all units on one side against all the units on the other side. This is done for both the Blue and 
Red units even though in the SHARED system only the assignments of the Blue units are used. 
When the weapons are fired on the assigned targets, damage will occur on both sides. ULTRA 
will then recalculate new target assignments based on the outcome (remaining health) of all units 
on both sides, and so on. At the first step (k=0), ULTRA determines the target selections for both 
Blue and Red units according to the designated task and Blue team composition determined at 
the Team Composition and Tasking (TCT) level. A comparison of the computational 
requirements of ULTRA and the exhaustive search algorithms is shown in Fig.3. 

A block diagram illustrating an open-loop implementation of the ULTRA controller at the TDT 
level is shown in Fig. 4.  In this implementation, sensor information from the battlefield about 
damage assessment is either not available or cannot be obtained. This could be due to several 
reasons, including the breakdown of communication between the sensor UAVs and the TDT, or 
possibly the destruction of the sensor UAVs. In this case, and without such information, ULTRA 
will use an attrition model to predict the battle damages, and uses these predictions to calculate 
the target assignments (controls) at the next step. Clearly, because of the probabilistic nature of 
any attrition model used in this context, ULTRA’s prediction of the damages on each side could 
be considerably different from the actual damages in the battlefield. Consequently, the resulting 
target assignments at subsequent steps may not be the most effective.  On the other hand, when 
real time information from the battlefield about unit damage assessment are available and can be 
transmitted to the algorithm, ULTRA can be implemented as a feedback controller as illustrated 
in Fig 5. In this implementation, the unit damage information from the battlefield, which are fed 
back to the algorithm at the end of every step, are used to calculate the target assignments at the 
next step. 
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Figure 4.12 Computational Requirements of ULTRA vs. Exhaustive Search 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.13 Block Diagram of ULTRA Open-loop Controller 
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Figure 4.14 Block Diagram of ULTRA Feedback Controller 

 

Accomplishment 4: Test Example on an OEP Scenario 

In this section, we will illustrate the performance of the ULTRA algorithm on a test bed scenario 
described in Fig. 6. In this scenario, it is assumed that the Red side (the enemy) is supported by a 
neighboring country (red area 0) and is occupying Red areas 1, 2 and 3. Red has integrated its air 
defenses into the neighboring country’s EW radars and C2 structures. These EW radars and C2 
structures are deemed acceptable targets. The Blue force consists of a limited number of ground 
forces and UAVs.  The Blue base is centered at the Blue area 3 in Fig. 6 and other supporting 
Blue forces can be deployed at Blue areas 1 and 2. The Red force has a limited number of long 
range and medium range, surface-to-air missiles (SAMs). The strategic objective for the Blue 
force is to protect the Blue operating base from attack by the Red surface-to-surface missiles 
(SSMs) and armor; and to eliminate the Red SAM sites.  

  
 

 

 

 

 

 

 

 
Figure 4.15 Scenario Battlefield 

Blue Area 3 

Red Area 2

Blue Area 1 

Red Area 1 
Red Area 0 

Red Area 3

Blue Area 2 



SHARED Final Report 

   53

In order to compare the performance of the ULTRA open-loop and feedback controllers, we will 
consider a specific detailed experiment performed in Red area 2. Suppose that one Blue team of 
UAVs is dispatched to neutralize the ground forces and the integrated air defenses (IADs) in Red 
area 2. The ground forces include tanks, personal carriers, communication vans, etc., and the 
IADs include long range, medium range, and mobile SAM sites. The deployment of Red forces 
in Red area 2 is shown in Fig. 6. A complete description including the initial equipment, the 
number of units, the worth of units, the weapon types and quantities for each Red unit in that 
area is given in Table 4.2. The Blue team, on the other hand, consists of a total of 11 UAVs: 3 
UAVs equipped with large weapons (16 seeker missiles), 4 UAVs equipped with small weapons 
(6 seeker missiles) and 4 UAVs equipped with small combos (4 seeker missiles). A complete 
description of the Blue units is given in Table 4.3.  

The objective functions BJ (u,v) and RJ (u,v) are given by 

1 1

( , ) ( )   and  ( ) ( )
BIK

B B
B B B i i

k i

J u v W k W k w p k
= =

= =∑ ∑  for the Blue team   

1 1

( , ) ( ) and ( ) ( )
RIK

R R
R R R i i

k i

J u v W k W k w p k
= =

= =∑ ∑  for the Red team 

where the worth values of units in the third column of Table 4.2 and Table 4.3 are used as 
weighting coefficients B

iw and R
iw in the above objective functions. XI is the total number of units 

for the force X, and ( )X
ip x  is the number of the remaining ith units in the force X at step k 

(X=B(Blue),R(Red)). The ULTRA calculated open-loop target selections for the first four steps 
for the Blue UAVs are given in Table 4.4. We implement these controls on the Boeing 
Simulator. After the first round engagement, we observe that one communication van, four 
SPARTYs and five personal carriers are destroyed as expected. However, we also see that four 
tanks, instead of one tank in the first-step target selection, are destroyed after this engagement. 
This is because the locations of those tanks are very close to each other and collateral damage of 
other tanks may have taken place when a missile is fired at one tank in that location. It is not 
surprising that, with no valid damage information available to the ULTRA (open-loop) controller 
at this time, several Blue UAVs have been assigned certain tanks, which have already been 
destroyed in the previous step, as targets at the next step. Consequently, the action of these Blue 
UAVs attacking other important targets has been delayed and the weapons they fired at the 
“destroyed” targets are apparently wasted. We also note that, after the first round, some UAVs 
such as the ones labeled Small Weapon 1 and Small Combo 3 are shot down by Red IADs and 
thus there should be no target selection possible for them at the next step. 
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Table 4.2 Red Force in Red Area 2 

Blue UAVs in Team 1 
(assigned to Read Area 2) 

# of Unit  

(total = 11) 

Worth of 
each UAV 

Weapon Type Weapon Quantity 
Per Unit 

Large Weapon 3 20 Seeker missile 16 

Small Weapon 4 20 Seeker missile 6 

Small Combo 4 20 Seeker missile 4 

 
Table 4.3 Blue Team 1 assigned to Red Area 2 

Red Unit (Red Area 2) # of Unit 

(total=38) 

Worth 
of  

each 
unit 

Weapon Type Weapon 
Quantity  

Per Unit 

Long Range SAM sites (2 sites) 8 10 long_sam_missile 4 

Medium Range SAM sites(6 sites) 6 7.5 medium_sam_missile 8 

Tanks 10 10 tank_projectile 50 

SPARTY 4 10 artillery_proj-ectile 100 

Personnel Carriers 5 10 small_arms 20 

Communi- cation Vans 1 10 Surface-to-surface_missile 4 

Mobile SAM sites 4 7.5 medium_sam_missile 8 

 

In the experiment where ULTRA has access to battle damage information, and the corresponding 
controller is implemented in feedback form, the control choices for the first 4 steps are listed in 
Table 4.5. We also implemented these controls on the Boeing simulator. This time, as we can see 
in Table 4.5, the target assignment for the Blue units at the second step includes neutralizing only 
those tanks that are still alive in the battlefield.  After the second round, and upon detecting that 
all the mobile SAM sites are destroyed, instead of predicting that only two of these are destroyed 
as was the case in the open-loop control, the Blue UAVs are now able to save their weapons to 
attack other important targets in the subsequent steps. Clearly, the feedback controller allows for 
more reasonable decisions made by the Blue control in the battlefield provided that it has 
accurate information about the current battle damage at each engagement step. Such information 
plays a key role in the ULTRA feedback controller being able to derive target assignments for 
the Blue force that actually make sense. For the purpose of comparison, snap shots of the final 
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outcomes after four steps using the open-loop and feedback ULTRA controllers are shown in 
Fig.4.15. Note that with feedback, four Long-SAM-13 launchers, one medium SAM site, and all 
the ground troops are destroyed. In addition, six Blue UAVs are preserved.  

In contrast, in the open-loop case, only one Long-SAM-13 launcher is destroyed, and three Blue 
UAVs are preserved. The partial outcome for the battle is given in Table 4.6.  

We also compared the worth of the remaining Red force deployed in Red area 2 and the 
remaining Blue force assigned to Red area 2 at the end of each round under open-loop and 
feedback controls. These are shown in Fig.8 and Fig.9, respectively. The total worth of the Red 
and Blue force at step k is given by (1).  We note that the worth of the Red (or Blue) force when 
using the ULTRA feedback controller is lower (or higher) than that of Red (or Blue) force when 
using ULTRA open-loop controller as the battle progresses. This makes sense in that the 
feedback controls usually have an advantage over the open-loop controls when unpredictable 
conditions in the battlefield are present. 

 
Table 4.4 ULTRA Open-Loop Target Assignments 

Target Assignments (Control Output) 
Blue UAV 

1st step 2nd step 3rd step 4th step 

Large Weapon 1 Communication Van Tank 2 Mobile SAM 3 No Target 

Large Weapon 2 SPARTY 1 Tank 3 Mobile SAM 4 No Target 

Large Weapon 3 SPARTY 2 Tank 4 Long SAM 13 launcher 1 No Target 

Small Weapon 1 SPARTY 3 Tank 5 Long SAM 13 launcher 2 No Target 

Small Weapon 2 SPARTY 4 Tank 6 Long SAM 13 launcher 3 No Target 

Small Weapon 3 Personal Carrier 1 Tank 7 Long SAM 13 launcher 4 No Target 

Small Weapon 4 Personal Carrier 2 Tank 8 Long SAM 12 launcher 1 No Target 

Small Combo 1 Personal Carrier 3 Tank 9 Long SAM 12 launcher 2 No Target 

Small Combo 2 Personal Carrier 4 Tank 10 Long SAM 12 launcher 3 No Target 

Small Combo 3 Personal Carrier 5 Mobile SAM 
1 Long SAM 12 launcher 4 No Target 

Small Combo 4 Tank 1 Mobile SAM 
2 Medium SAM 25 No Target 

 

We are also interested in the net performance of the ULTRA controllers. The net performance 
for the Blue force at step k is calculated according to: 

( ) ( )( ) ( ) (0) ( ) (0)B B R RNet k W k W W k W= − − −  
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The net performance for the Blue force is a measure of the total gain of the Blue force plus the 
total loss of the Red force. We compared the net performance of the Blue force when controls are 
implemented in open-loop and feedback forms. The results are shown in Fig. 4.18.  

 
Table 4.5 ULTRA Feedback Target Assignments 

  
 

 

 

 
 

 

 

 

 

 
Figure 4.16 Outcome with the Open-loop Controller (left). Outcome with the Feedback Controller (right) 

Target Assignments (Control Output) 
Blue UAV 

1st step 2nd step 3rd step 4th step 

Large Weapon 1 Communication Van Tank 5 Long SAM 13 launcher 1 No Target 

Large Weapon 2 SPARTY 1 Tank 6 Long SAM 13 launcher 2 No Target 

Large Weapon 3 SPARTY 2 Tank 7 Long SAM 13 launcher 3 No Target 

Small Weapon 1 SPARTY 3 No Target No Target No Target 

Small Weapon 2 SPARTY 4 No Target No Target No Target 

Small Weapon 3 Personal Carrier 1 Mobile SAM 
1 Long SAM 13 launcher 1 Medium SAM 25 

Small Weapon 4 Personal Carrier 2 Mobile SAM 
2 Long SAM 13 launcher 2 Medium SAM 25 

Small Combo 1 Personal Carrier 3 No Target No Target No Target 

Small Combo 2 Personal Carrier 4 Tank 8 Long SAM 13 launcher 4 Medium SAM 25 

Small Combo 3 Personal Carrier 5 No target No Target No Target 

Small Combo 4 Tank 1 No target No Target No Target 

Long range SAM13

Medium range SAM25

Blue UAVs
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Table 4.6 Partial Outcome of the Battle in Red area 2 

Initial Number of Units 
With Open-Loop 

Controller 

With Feedback 

Controller 

8 long sam launchers 1 destroyed 4 destroyed 

6 medium sam sites 0 destroyed 1 destroyed 

11 UAVs 3 preserved 6 preserved 

 

 

 
Figure 4.17 Worth of Red Force deployed in Red Area 2 
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Figure 4.18 Worth of Blue Force Assigned to Red Area 2 

 

 
Figure 4.19 Net Performance for Blue Force 

 

As we expected, the net performance of the Blue force tends to improve with feedback as the 
battle progresses. However, this was not the case for the open-loop controller.
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Accomplishment 5: Comparison of Nash and Naïve (Random or Greedy) Strategies 
It is often said that when a team of fighting units targets a team of enemy units, a random or unit 
greedy targeting strategy will perform as well as - if not better than - a targeting strategy 
determined based on some game-theoretic analysis. Our work on this topic shows that this is not 
the case, especially if the enemy is intelligent, employing a carefully designed strategy. We 
consider two teams of non-homogeneous fighting units simultaneously targeting each other. On 
each side, we consider three targeting strategies: (1) A random strategy where the units on each 
side randomly select their targets; (2) A unit greedy strategy, where each unit selects the specific 
target on the other side that it performs best against; and (3) A team Nash strategy which 
guarantees for the team as a whole, that the other team’s performance will deteriorate if it 
doesn’t also use a team Nash strategy. In some sense, the first two strategies can be viewed as 
uncoordinated, naïve, unit-based strategies; and the third as a coordinated, smart, team-based 
strategy. 

In order to compare the performance of these three strategies we first need to consider a model 
for the objective functions.  If we let X

xa denote the worth of unit x in Team X (A or B) for team 
A, X

xb  denote the worth of unit x in Team X  for team B, and ,
X
x yp denote the probability of kill of 

unit x in Team X  against unit y in Team Y , then a general form of the objective functions for 
the two teams will be:  

( ) ( ), ,
1 11 1

( , ) 1 1
M NN M

A B B A
A i j i j j i j i

i jj i

J u v a p i v a p j uδ δ
= == =

⎡ ⎤ ⎡ ⎤= − − − − −⎣ ⎦⎣ ⎦∑ ∑∏ ∏  

( ) ( ), ,
1 11 1

( , ) 1 1
N MM N

B A A B
B i j i j j i j i

i jj i

J u v b p i u b p j vδ δ
= == =

⎡ ⎤ ⎡ ⎤= − − − − −⎣ ⎦⎣ ⎦∑ ∑∏ ∏  

Note that these objective functions as are constructed such that the worth of a unit may differ 
from one team to the other. For example, the worth of unit i in team A is A

ia for team A and 
A

ib for team B.  

This gives the possibility of considering both zero-sum and non zero-sum objective functions. In 
the above, the term ( )p qδ −  is the Kronecker delta defined by 

0  if  
( )

1  if  
p q

p q
p q

δ ⎧
⎨
⎩

≠
− =

=
, 

and is used to indicate that unit q  in one team has been assigned to target unit p in the other 
team. Essentially, these expression can be interpreted that the objective of each team is to 
maximize the expected worth of its surviving units while simultaneously minimizing the 
expected worth of the surviving units on the other side (or maximizing the expected destruction 
of units on the other side).  

As a specific numerical example, we consider a problem with 10 units on each side 
( 10M N= = ). We assume that the worth of the units are  for 1, 2,...,10A A

i ia b i i= = =  
and  for 1, 2,...,10B B

i ia b i i= = = . We chose this distribution of unit worth so as to make the unit 
greedy strategy a meaningful strategy by allowing for a wide range of worth of units on each 
side. With this choice, the objective functions represent a zero-sum situation. The total initial 
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worth of each team is 
10

1
55A A

i
i

a a
=

= =∑  and
10

1
55B B

i
i

a a
=

= =∑ . We performed 25,000 Monte Carlo 

optimization runs with probabilities of kill ,
A
i jp and ,

B
i jp uniformly distributed over an interval 

[ ,p q ]. Tables 7 and 8 below show the percentages of total remaining worth on each side after 
six rounds of targeting, for all 9 possible combinations of target assignment strategies and for the 
two intervals [ ,p q ] = [0, 1] and [ ,p q ] = [0, 0.5]. 

Table 4.7 Percentage of Total Worth Remaining on Each Side at the End of Battle with [p,q] = [0, 1] 

 Red Strategy 

 Random Unit Greedy Nash 

Random 
Blue: 27.7% 

Red: 27.7% 

Blue: 6.8% 

Red: 26.2% 

Blue: 0.0% 

Red: 58.0% 

Unit Greedy
Blue: 26.0% 

Red: 6.9% 

Blue: 5.7% 

Red: 5.6% 

Blue: 0.0% 

Red: 35.3% 

Blue Strategy 

Nash 
Blue: 57.9% 

Red: 0.0% 

Blue: 35.3% 

Red: 0.0% 

Blue: 6.1% 

Red: 6.0% 

 

Table 4.8 Percentage of Total Worth Remaining on Each Side at the End of Battle with [p,q] = [0, 0.5] 

 Red Strategy 

 Random Unit Greedy Nash 

Random 
Blue: 42.5% 

Red: 42.3% 

Blue: 20.1% 

Red: 43.7% 

Blue: 1.2% 

Red: 61.3% 

Unit Greedy
Blue: 43.6% 

Red: 20.2% 

Blue: 21.0% 

Red: 21.1% 

Blue: 1.5% 

Red: 37.9% 

Blue Strategy 

Nash 
Blue: 61.4% 

Red: 1.2% 

Blue: 38.0% 

Red: 1.5% 

Blue: 12.8% 

Red: 13.0% 

 

Based on these results, we can draw the following conclusions: (1) when one does not know 
what the enemy’s targeting strategy is, the Nash strategies are far superior than the other two. (2) 
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Using a random targeting strategy could lead to disastrous results especially if the enemy is 
intelligent, using a smart targeting strategy such as the Nash strategy. The entire team can easily 
get wiped out if a random targeting strategy is employed. (3) The more effective the force is (i.e 
the higher the probabilities of kill) the higher the incremental improvements of the Nash strategy 
will be over other two strategies. This implies that the stronger the force is, the more emphasis 
should be placed on planning.  

4.4 CPPP Accomplishments 

The CPPP accomplishments are mainly in two forms: Theory and implementation/simulation. 

4.4.1 Accomplishments on Theory 

(The list below only includes some highlights we have achieved on theory. More theoretical results and detailed 
description are in the publications listed at the end of this report.) 

 Adopt a methodology which treats the scenario of interest as a multi-objective cost 
function profile and views the UAV groups from biological perspective. Ref.[cppp-3]. 

 Develop a first-order dynamic model for each UAV and prove the stability of the 
interconnected multi-agent system in terms of cohesiveness. Ref.[cppp-6].  

 Apply foraging theory in cooperative path planning and study its cohesion properties in a 
stability-theoretic framework. Ref.[cppp-7]. 

 Construct a general swarm model with uncertainty with each agent having double-
integrator dynamics. We show the advantages of social behaviors over non-social one 
and obtain theoretical results in both continuous and discrete time case. Ref.[cppp-10]. 

 Investigate a model of multi-UAV system with limited sensing capability and obtain 
explicit conditions for the system to stay cohesive. Ref. [cppp-11]. 

4.4.2 Accomplishments on Implementation/Simulation 

 Advantages of social foraging over non-social foraging, i.e., cooperation over non-
cooperation, are shown by simulation results and theoretical results are verified (Fig. 
4.20). 

 Three dimensional path planning algorithm is developed and implemented in OEP test-
bed. Good performance on terrain tracking is demonstrated. Performance of 
implementations on different models, a cellular automata model and a continuous motion 
dynamics model, are compared (Fig. 4.21). 
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Figure 4.20 Comparison of cooperation against Non-cooperation 

 

 
Figure 4.21 3D Path Planning with Different Implementations Typical terrain tracking simulation results 

from OEP Dynamic Model (upper) and Automata Model (lower). Desired altitude: 400m AGL 

N=1 N=36
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 Algorithms capable of accommodating constraints on UAVs flight dynamics and 
performing full path generation are developed (Fig. 4.22). 

 A heuristic algorithm dynamically adjusting threat effect (DATE) is developed to 
improve the path planning performance, which eliminate the problem of UAVs getting 
“trapped” in local optimum and also take time constraints into consideration (Fig. 4.23). 

 System integration is accomplished (Fig. 4.24).  

 Integrated with TDT to perform "local" simulation for efficient algorithm development 
and verification.  

 Interface developed to integrate with Shared Domain Model. 

 
Figure 4.22 Algorithm for Handling Flight Dynamics 
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Figure 4.23 Algorithm for Dynamically Adjusting Threat Effects 

 

 
Figure 4.24 System integration diagram 
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4.5 CPPS Accomplishments 

 

CPPS Accomplishments have been achieved along 4 avenues.  

-The first avenue of technical accomplishment is in the probabilistic modeling of the search 
environment. A cognitive map, which is defined as an array of equal area cells whose boundaries 
correspond to areas of the search environment, is then utilized to manage this model. Uncertainty 
management is rendered into probabilistic terms, for each potential target, by defining several 
important events, each of which depends on a known or quantifiable probability. Each cell of the 
map stores information about what is known about the area of the environment that it covers. For 
any target, let event Fx be the event that that a potential target is detected in cell x, Tx be the 
event that that target truly is in cell x, and E be the event that that potential target is really a target 
(i.e. isn’t just a glitch in the sensor, or a false target.) Some of these events are given (such as a 
sensor producing a Fx event) and some represent events about which uncertainty is associated 
(such as Tx). This type of Bayesian formulation allows information to be captured both as a 
priori information (or commander intuition) or as the result of observations in a dynamic and 
noisy environment.  

 

Storing these probabilistic values efficiently on the cognitive map can be done using the concept 
of relative probabilities. The probability of a target being within a cell (Tx) is given by P, while 
the relative probability is given by C. The relationship between the two is given by  

1

i
i i ix

x xN i
xx

CP V C
C

=

= =
∑

 

where i denotes the target index number and N is the number of cells of the map. If a sensor 
reports the location of a target, this is recorded onto the cognitive map. However, if the sensor 
returns a negative sensor report, the uncertainty of the area that was searched has decreased, and 
the cells representing the area that has been searched (i.e. had a sensor pass over them) must be 
updated. This update equation is given by  

' (1 )i i
x xC C ρ= −  

where the prime indicates a posterior value and ρ is the sensor efficiency of the acting sensor. 
The sensor efficiency measures the probability that a sensor will miss a potential target when it 
should have detected it. This relative probability formulation produces a much more efficient 
updating algorithm than updating P directly, since only cells that have been searched are 
updated, instead of every cell of the map. Observations from multiple sensor types can use the 
same update equation, just with different parameters.  

 

Next, a measure of desirability for searching any cell is defined (σ). This value represents the 
expected number of targets to be found upon searching a cell. This can be given by 
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where ζ is the probability of the target not being a sensor glitch or false target. This value can 
then be used to determine which cells are better to search, and also produce a quantifiable 
amount by which they are better to search. 

 

-The second avenue of research accomplishment is in the probabilistic modeling of the threat 
environment. A UAV would want to avoid an area where it may be damaged or destroyed, i.e. 
the area contains some sort of threat. This threat could come from the terrain itself (i.e. a vehicle 
can crash into mountains, trees, building, etc.,) from small arms ground fire (if the UAV’s 
altitude is too low,) or from Surface to Air Missle (SAM) sites. In order to adequately capture the 
nature of threats and terrain, a 3-D model of environment was created. This involved creating 
several more cognitive maps (which are 2-D grids of equal area cells.) One map stores the terrain 
height (or reads it in from a DTED file,) one map stores the altitude at which ground fire 
becomes a threat, and one map stores information on the location and parameters of SAM sites. 

 

 
Figure 4.25 A Cross Section of a SAM Threat Radius 

 

The threat to a vehicle can be calculated at any point by the values on these maps. 
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gives danger from terrain, where the altitude of the UAV is au and the altitude of the ground is 
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gives the danger from ground fire, where the lowest safe altitude from ground fire is given by af 
and F denotes the probability of being destroyed by the ground fire in one time step. 
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gives the danger from SAM sites. In this equation, rj

u is the distance from the point directly 
below the vehicle to the SAM site, rj

s is the minimum safe distance from the SAM site at a 
particular altitude, and Tj is the probability of being destroyed by the SAM site over one time 
step. The total threat to a vehicle can be found by 
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 , 

where NT is the number of SAM sites. 

 

-The third accomplishment of CPPS is the implementation of a Dynamic Programming algorithm 
that utilizes the information from the first two areas and produces the paths that the vehicles will 
follow. At each time step, there are 5 decisions that a vehicle must choose from. This is showed 
in the following diagram. 

 

 
Figure 4.26 5 Decisions of a UAV at Each Time Step: Turn Left or Right, Ascend, Descend, or Go Straight. 

 

The planning algorithm attempts to optimize not only the current decision, but also the future 
decisions, using a Dynamic Programming recursion: 

)}),(({),((max)( 1 kkkkkUukk uxfJEuxgxJ
k

+∈
+=

, 

where Jk is a cost-to-go function from the time step k to the end of the planning horizon, U is the 
set of choices a vehicle can make at a time step, uk is the choice a vehicle makes at time k, xk is 
the state of the system at time k, and f(xk,uk) gives the state (i.e. xk+1) that results when a vehicle 
makes choice uk at state xk.  As the curse of dimensionality makes this computationally very 
difficult to solve over the entire vehicle’s lifetime, an optimal result is produced for only a 
smaller rolling planning horizon. The information about the search gain and the level of threat 
are used in this decision as terms in the single-step gain function g(xk,uk). This is defined as 
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){),( kkkkk IEuxg δσ=  
where k is the time step index, σ is as defined above, δ is computed from the threat map using 

∏
=

−=
k

i
ik d

1

)1(δ  

and I is a cooperation aspect. The value of I is calculated using a template to predict where other 
vehicles will be. 

plan time = t plan time = t+1 plan time = t+2  
Figure 4.27 A Depiction of How Vehicles Predict Where Another Will Be. (The shaded regions represent a 

positive probability that another vehicle will be in the area.) 

 

Thus, the decision process is decentralized, and, while requiring communication, does not 
require negotiation. Each vehicle acts on the information available to it. If all the vehicles have 
the same information, they will all produce the same results, but in the case where 
communications are not ideal, each can still function in a near optimal fashion. 

 

-The fourth accomplishment is in the area of the implementation architecture and integration 
with the rest of SHARED. Figure 4.28 shows a diagram of the architecture used to implement the 
CPPS algorithm.  In this figure, white denotes an agent, green denotes an information base.  

 

 
Figure 4.28 The Modular Architecture of CPPS 
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In this architecture, several software agents were created, each one to handle one aspect of the 
problem. The planning agent houses the actual algorithm that produces the paths. The search 
map handler agent maintains the cognitive map where the target information is stored, and 
provides the search gain for a particular area to the planning agent. The threat map handler 
maintains the cognitive maps where the threat information is stored, and provides the level of 
threat for a particular area to the planning agent. The Majordomo is an agent that simply 
performs housecleaning functions, and directs incoming or outgoing information to the proper 
agent. This architecture is modular both internally and externally to CPPS. The internal 
modularity allows for development and refinement of each part of CPPS as the research 
progressed. (For example, it would be possible to refine the methods used to store target 
information without disrupting the work on threat avoidance.) The external modularity allows 
easy integration with the other SHARED modules, and, at the same time, the ability to function 
in other testbeds as well. Such a testbed was developed in-house to test the algorithms in order to 
improve performance of this module, and (since CPPS is part of the whole,) the performance of 
the entire SHARED hierarchy. 
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Figure 4.29 A Trial from Using CPPS in an In-house Test Bed 

 

The solid black line shows the outline of the search area, which can take on any polygonal shape. 
The large blue dashed circles represent areas being threatened by SAM batteries. The small red 
dashed circles represent the uncertainty areas associated with potential targets. Each target is 
known to be within the uncertainty area, but its exact location is unknown. The colored lines that 
bend and twist around are plots of each vehicle’s path. It is possible, even in this abbreviated 
mission, to see the vehicles searching out the targets, and avoiding the threatened areas. 
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Figure 4.30 A Trial from Using CPPS as Part of the SHARED Test Bed 

 

This picture shows some UAV’s on a protect mission (which uses the CPPS module.) The 
protect mission sends the vehicles out to search for unknown hostile forces in the area. These are 
modeled as potential targets that have an uncertainty region of the protected area. One can see in 
this figure that the small, fast UAV’s are spreading apart to search the area more efficiently. (The 
larger UAV’s will do so, too, but they are just moving more slowly.) 

4.6 SHARED System and VIA Accomplishments  

The SHARED system is for use by commanders to manage a task situation involving a number 
of SEAD, Close Air Support, Interdiction, and Protection missions using a single squad of 36 
UAVs, in a situation in which multiple semi-autonomous agents are participating in the control 
decisions. The high-level use case for the system is shown on the next page.  

The basic use case for the SHARED system, shown below, includes a single human, the squad 
commander, who is in command of a squad of UAVs. At the highest level, he is involved in a 
use case designated Approve/Modify Situation and Processes. Other agents involved in the 
system are the C4ISM, which provides the external reality; the Situation Agent, which creates 
and maintains a hierarchical interconnected representation of the battlefield situation; the 
Interaction Agent, which creates and maintains the human-system interaction required by the 
situation; the UAV Vehicle Control, which performs the low level flight control; the Team 
Composition and Tasking Agent, which performs task planning by forming teams, assigning 
them to missions, and weaponizing individual UAVs for each squad; the Dynamics/Tactics 
Agent, which performs target nomination, attack ordering, and weapon allocation for each team; 
the Cooperative Path Planner, which performs flight planning for each UAV; and the 
Cooperative Search Planner, which performs flight planning for search activities. External agents 
are called by objects in the situation representation whenever they need the services of those 
agents. 
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Figure 4.31 Basic Use Case for the SHARED System 

 

The high level sequence of operations of the SHARED software is shown below. When the 
commander invokes the software, the situation agent is invoked. The situation agent connects to 
the simulation, collects the IPB, and creates and maintains the situation throughout the life of the 
active software. When a complete situation model is formed, the TCT, then the TDT, then the 
AID system are called to perform initial planning and create the initial user interface. 
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Figure 4.32 High Level Sequence of Operations of the SHARED Software 
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The SHARED software is fully operational. The architecture of the SHARED system is shown 
below. On the left, a number of external planning agents are called as necessary by objects 
located within a central representation of the current situation. This situation representation is 
created and maintained under control of a Situation Agent. A set of agents (the Interaction 
Agent and the Presentation Agent) that design and present user interfaces are combined to form 
the Automated Interaction Designer (AID). The function of the AID software is to generate 
required human and system interactions for the domain of autonomous vehicle control, including 
the results of other automated reasoners that are part of the SHARED program. AID dynamically 
produces user interfaces to the situation, as appropriate to the human user’s current needs. 

 

Figure 4.33 Architecture of the SHARED System 

 

Object-oriented models provide the knowledge base for the situation agent and the AID agents. 
The Domain Model, under control of the situation agent, provides the semantic basis for 
interaction design, allowing control system independence and an object-oriented representation 
of control system components. The hierarchical, task-driven Interaction Model, driven by the 
interaction agent, provides the design knowledge required for automatic composition of 
appropriate tasks and abstract interactions, allowing dynamic application of the principles of 
usability engineering to support the design of the interactions between people and systems. The 
Presentation Model, driven by the presentation agent, possesses knowledge about how to select 
and format concrete user interfaces to express interaction designs, allowing hardware and 
operating system independence, and a clear separation between abstract interactions and concrete 
interfaces.  

Under the control of their respective software agents, each model is used as an exemplar 
database to produce dynamic models of the ongoing situation, the current interaction design, and 
the current presentation. An object-oriented Situation Representation, containing a 
representation of the system’s situation in the real world, is created from the domain model. All 
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interaction participants share the dynamic situation representation, ensuring shared knowledge 
for grounded collaboration. The interaction agent starts the design process for a particular user 
by creating an interaction object, which specializes itself using a compositional productive 
process to create an Interaction Design. The presentation agent (under the direction of the 
interaction agent) selects the appropriate presentation model for the currently accessed device 
(CRT/keyboard or handheld, in the current systems). It uses the objects in the presentation model 
as templates, selects and specializes them as necessary, and presents the Interaction Design as an 
Interface Design. As the user interacts with the situation through the generated user interface, or 
as the situation changes, the entire automated interaction design system continues to dynamically 
support the necessary user-system conversation. The TCT, TDT, and CPP reasoning modules are 
invoked as necessary by situation representation objects (task processes, mission processes, 
teams, and UAV controllers). 

4.6.1 Domain Model Detailed System Design 

This section presents the detailed system design information for situation modeling component 
of the SHARED system, including situation agent, the domain model, and the generated situation 
model. 

The Domain Model contains things and data. Things are subclassed to discriminate between 
Physical Objects, Organizations, Situations, Information, Input/Output Systems, and Processes. 
The domain model is a hierarchical organization of class types, with the classes organized into 
semantic networks and containment hierarchies when they are instantiated to match an object in 
the real world. The schema for the domain model is shown below. All of the classes in the 
schema, except Data and Action, are subclasses of Thing.
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Figure 4.34 Schema for the Domain Model 

 

The situation representation is dynamically created from the objects defined in the domain 
model. Using the types in the Domain Model, instances are created to make up the Situation 
Representation, including the objects, data, actions, and relationships in the situation, using the 
Factory Paradigm of maintaining a library and creating instances when needed. The semantics of 
the situation are contained in the situation representation. The initial situation is created from the 
Intelligence Preparation of the Battlefield (IPB) information supplied by the simulator, and is 
kept current through dynamic linkage between the situation model and the simulation. 

As the above diagram shows, the root object in a situation representation is the Operation 
Situation, which hierarchically contains the task situation that is being managed by the 
commander. In addition, the operation situation contains the places and groups that are 
participating in the operation. These types of objects are hierarchically composed of Systems, 
Equipment, and Actors. Situations (at all levels) also contain processes, which in turn are 
composed of activities. Activities may have associated plans, and may be assigned to specific 
Actors (the “performer” of the activity). 

The situation representation is a dynamic model of all of the entities currently participating in the 
situation, and includes software objects (of the types shown in the schema, as appropriate) that 
are semantically interconnected and which reflect the state of their referents in the real world. 
For example, an equipment object representing each UAV is created, with appropriate capable 
actions (Fly, Sense, Attack, etc.) and appropriate data (fuel consumption rate, current speed) and 
parts (path planning agent, communications system, throttle) for each UAV in the control 
system. In addition, the UAV might have a controller (an Actor, human or otherwise, that 
controls its behavior), and be part of a larger system or group, like a squad. That group is part of 
an operation, and the UAV’s controller may be participating in any number of processes at any 
level, and may be planned to perform any number of activities in those processes.  
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When the SHARED application is invoked, it creates a Situation Representation by calling the 
OperationSituation. The operation initiates a connection to the simulator (Sim), reading 
information that allows it to create a theater, blue forces, and a default mission with the 
necessary Task and Mission Situations and Processes in the situation model. 

Roads are currently the only hardcoded information used in the system. The information 
available from the Boeing simulator is used to create the Molian boundaries, Northern Neighbor 
boundaries, Blue Government and its controlled areas, an AirWing with a Squad with 36 UAVs, 
a human squad commander, and Molian Rebels and their controlled areas, with any known 
components. In addition, some unit type information is acquired from the simulator, and used to 
set the default values of some domain classes’ data values. The information acquired from the 
simulator is summarized in the following table: 

Table 4.9 Information Acquired from the Simulator 

Sim Type Name Domain Classes Domain Properties 

PlatformType LargeUAV 
SmallUAV 
WideBodyISR 
Tanker 

myMinimumSpeed 
myMaximumSpeed 
myWeaponCarryCapacity 
myMeanTimeToRepair 
myMaximumVerticalRate 

DefensiveType AAGuns 
ShortSAM 
MediumSAM 
LongSAMLauncher 

myReactionTime 
myRadarRange 
myReloadTime 

WeaponType GPSBomb 
SubMunitions 
SeekerMissile 
AntiRadiatiomMissile 

myMaximumRange 
myWeaponSpeed 
myCEP 
myCarryCapacityUsed 

 

The current version of the SHARED system supports a single operation situation containing a 
single task situation. Task Situations contain the entire picture of the battlespace as it involves a 
squad of UAVs. Task situations may contain a number of mission situations involving teams in 
that squad. Mission Situations are defined for SEAD, Close Air Support, Interdiction, and 
Defend Blue (Offensive Counter Air is not included at this time).  

An example of the composition of the top layer of a situation representation, expressed as an 
operation situation, is shown below. 
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Figure 4.35 An Example of Operation Situation 

 

In addition to containing lower level situations, situations contain corresponding execution 
processes: operation situations contain operation processes, task situations contain task 
processes, and mission situations contain mission processes.  

The operation situation contains information about the theater, the blue government, the enemy, 
the activities required to manage the operation situation, and a number of objects that represent 
the high level picture of enemy intent. These include the commander’s guess at enemy mobility, 
enemy aggression, and enemy objectives. Enemy objectives include (expressed as attributes of 
the high level Operation Situation object): 

• Opponent Objectives: Neutralize SEAD, Attack Blue Bases, Attack Blue Ground 
Forces 
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• Opponent Mobility: (default = 50%) commander’s guess at mobility of opponent 

• Opponent Aggressiveness: (default = 60%) commander’s guess at opponent’s 
aggressiveness 

Theater information contains information about theater-wide kill zones, roads, weather, terrain, 
and white buildings and vehicles. 

The information about the blue forces is hierarchically arranged inside of the blue government 
object, which contains definitions of the blue areas of control and representations of the air wing 
components, including the individual UAVs. In SHARED, an air wing is made of an ISR system 
and a squad. The squad is composed of a commander, some tankers, some UAV teams, a TCT 
agent, and a human interaction system. Each team has a TDT agent, and each UAV has a CPPP 
agent for path planning and a CPPS agent for search planning. In addition, UAVs possess a UAV 
Controller and decoys, weapons, and sensors. The HSI system is made up of an AID agent (to 
design and present the required user interfaces) and an interaction console. 

The information about the red forces is organized into red organizations (TerroristNetwork), 
which possess red enemy areas, each with objectives and red systems. The Network also 
possesses a GroundTroops that contains enemy ground systems. Objectives possible for each red 
area include: SEAD, Interdiction, and Close Air Support, and are set by the situation if red 
equipment is seen on the IPB, but are available to the user for manual objective setting. Red 
areas may contain the following types of equipment systems, corresponding to objectives for that 
area: air defense system, ground force system, and surface-to-surface missile system. Red ground 
force equipment systems may also be added to the force itself if it appears outside of a delimited 
red area.  

Equipment Systems contain equipment of particular kinds, documented in the table below, 
created based on the IPB. In addition, each system may have any number of suspected equipment 
objects, initially set to 0 but changeable by the human user. Each system also has an ROE and 
guidance associated with it. ROE is exclusively set to TCT (time critical target; default for air 
defense systems), KZ (attack only in designated kill zones; default for ground force systems), 
Hostilities, or No Strike (to exclude a system from attack). Guidance includes measure of merit 
(set by default to the values indicated in the challenge problem description) and the ability to de-
select a particular type of equipment. 



SHARED Final Report 

   78

Table 4.10 Documented Equipment Systems 

Equipment 
System 

Domain 
Components 

Simulator Names Hardness 
Category 

Air Defense 
System 

AAGuns 
ShortSAM 
MediumSAM 
LongSAMLauncher 
FireCtrlRadar 
SearchRadar 
SAMTrackingRadar 
EWRadar 
ESMEquipment 
C2Equipment 

aaa_site_type 
short_sam_site_type 
medium_sam_site_type 
long_sam_launcher_platform_type 
long_sam_fire_control_platform_type 
long_sam_search_radar_platform_type 
long_sam_tracking_radar_platform_type 
ew_radar_site_type 
red_esm_type 
c2_facility_type 

Light Armor
Light Armor
Light Armor
Light Armor
Light Armor
Light Armor
Light Armor
Light Armor
Light Armor
Structure 

Ground Force 
System 

Tank 
SelfPropelledArty 
APC 
MilitarySupplyTruck 
MilitaryLiquidTruck 
MobileC2 
MobileHeadQtrs 

tank_type 
SPARTY_type 
personnel_carrier_type 
red_supply_truck_type 
red_liquid_transport_type 
communications_van_type 
mobile_HQ_type 

Heavy 
Armor 
Heavy 
Armor 
Heavy 
Armor 
No Armor 
No Armor 
Heavy 
Armor 
Heavy 
Armor 

SSM System TELSSMLauncher 
TELSupport 

tel_type 
TEL_support_type 

Light Armor
Hard 
Structure 
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Figure 4.36 An Example of the Composition of a Task Situation 

 

An example of the composition of a task situation is shown on the left. The task situation is the 
level that contains all the missions for the squad, the guidance and intent for the squad, and the 
high level monitoring, command, and planning activities that are part of the task process for the 
entire squad.  

Information associated with the task situation that expresses command input include whether or 
not there are restrictions on collateral damage, what level of identification certainty is required, 
and whether or not to include certain mission types.  

The default process for an operation situation is automatically created and filled with activities, 
as is the default process for task situations (except for military activities, which are determined 
by the TDT). Mission situations are automatically filled with mission processes. The human 
commander may exclude processes from each area. 

There are currently two categories of mission processes: Offensive Process and Defensive 
Process, with three types of offensive processes currently defined (SEAD, CAS, and 
Interdiction). One mission process of each type is created for each area. For example, with the 
SEAD objective for area 3, the Mission Situation for IADS will contain an Offensive mission 
execution process, which contains all the activities necessary to perform SEAD in that area.  

The number of Mission Situations and Mission Processes in a task situation is limited. Mission 
situations are created for each type of objective in a task situation, so they are limited to 4: 
SEAD, Interdiction, CAS, and Guard. The maximum number of processes in each situation is 
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equal to the number of red or blue areas; an Offensive Mission Process for each red area for 
SEAD, CAS, or Interdiction mission situations, and a Defensive Mission Process for the Protect 
Blue mission situations.  

Mission processes are filled with targets in response to known or actual enemy objects in specific 
areas, and are intended to represent one team of UAVs against a specific type of system in a 
particular area. As part of the task process, the task plan contains a list of the mission processes, 
as well as the start times of each and the team assigned to perform it (set, as described below, by 
the TCT agent). 

The figure below shows an expansion of the mission situation for SEAD into a number of 
offensive processes, and shows the details of the activities created within one offensive process. 

 

Figure 4.37 Expansion of the Mission Situation for SEAD
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The details of a defensive process model are shown below. 

 

 

Figure 4.38 Details of a Defensive Process Model 

 

Each type of process (operation, task, or mission process) is defined as being made up of a set of 
activity objects, like command, fly, sense, attack, monitor, plan a route, or evaluate a plan. As 
part of the task situation, the task processes needed to represent the unfolding task are created, 
and automatically filled and assigned to appropriate actors (see below). In the same way, as part 
of the creation of a mission situation, the mission processes required to perform each mission 
situation are created and assigned.  

The number of activities in a mission process is unlimited and will fluctuate as the situation 
changes. Activities are created for the human commander (Monitor, Command, Evaluate Plan, 
Define, etc., as appropriate to the level [operation, task, or mission]). Activities are also created 
for the automation (the TCT agent is assigned the Task Planning Activity, AID is assigned all 
Human-System Interaction Activities, the TDT agent is assigned the Mission Planning Activity, 
and the CPP agent is assigned the Route Planning Activity).  

Military Activities can only be performed by UAVs, and are not created by the situation, but by 
the TDT based on the needs of the situation. The Military Activities include: Fly, Attack, Sense, 
Locate, Jam, Protect, and Refuel. Based on the targetlist derived from IPB, the TDT defines 
Attack (with accompanying FlyTo activities), Sense, Refuel, etc. activities for each target. These 
activities are then created in the situation representation and added to the mission process. 

Objects in the situation representation automatically react to the changes in the situation as 
indicated by simulator values, and objects and context are created and destroyed as necessary to 
provide a semantically rich picture of the actual situation. The situation model actively and 
dynamically performs target evaluation, creating missions and mission targets as necessary, for 
assignment by external agents like the TCT and TDT. Each situation type knows what sort of 
targets needs to be included in a process, subject to commander’s guidance, objectives, and ROE.  
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Activities currently belong to the MissionProcess in which they were created, and they also, if 
assigned, sit on a list in the UAVController. When called upon to do something for the next time 
step, the UAVController goes through this list and takes appropriate action for all In Process 
activities, marking them Complete if needed. It finds the first Scheduled activity, tries to execute 
it, and marks it Complete or In Process as appropriate. If the simultaneity rules allow it, the 
controller moves to the next activity. 

The actors defined in the SHARED system include the Human and a number of automated actors 
(TCT, TDT, CPP, AID, and the UAVController). Each Actor object knows what kinds of 
Activities it can perform, and tracks these types in its myCapabilities property, summarized 
below.  

Table 4.11Summary of Capabilities of Each Actor Object 

ActorObject type Capabilities 

Human CommandControlActivity, MonitorSitn, DefineActivity, 
AnalysisActivity, ConfigurationActivity, RoutePlanning, 
MissionPlanningActivity, TaskPlanningActivity, 
WeaponAllocationActivity, TeamAssignmentActivity 

UAVController FlyTo, ProtectActivity, SenseActivity, Refuel, JamActivity, Attack 

AIDAgent HumSysInteraction 

TCTAgent TaskPlanningActivity, WeaponAllocationActivity, 
TeamAssignmentActivity 

TDTAgent MissionPlanningActivity 

CPPPAgent RoutePlanning for FlyTo Activities 

CPPSAgent RoutePlanning for Protect Activities 
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Conversely, each Activity tracks a preferred type of Actor to perform that Activity. 
Table 4.12 Preferred Type of Actor Tracked of Each Activity 

Activity type Preferred Actor type 

HumSysInteraction Human 

CreativeActivity Human 

MilitaryActivity UAVController 

RoutePlanning CPPPAgent 

MissionPlanningActivity TDTAgent 

TaskPlanningActivity TCTAgent 

WeaponAllocationActivity TCTAgent 

TeamAssignmentActivity TCTAgent 

 
Task Planning Activity. At the Task Situation level, each task process has a task planning 
activity that contains a Task Plan. During creation of the task situation, the following data 
structures are created automatically as part of the task plan: 

• MissionExecutionsList: Vector of MissionExecutionProcess  

• TargetList : Vector of systems that are targets for offense or defense 

• Assets: UAVs in this squad  

The targetlist is the total list of red equipment targeted within all of the task’s missions. Red 
equipment is considered as a target based on the current guidance, objectives, and state of the 
situation. Because this information doesn’t fully satisfy the task planning activity, the agent 
assigned to this activity (generally the TCT) is called to finish the activity. It performs the 
functions of allocating the squad members into teams (one team for each Mission Process, 
although individual UAVs may be members of multiple teams over different stages), 
determining the weapons requirements for each UAV, and determining ordering of Mission 
Processes.  

The TCT is given a reference to the OperationSituation, and a reference to the TCT process 
representation inside that OperationSituation domain representation. The information sent to the 
TCT Agent can be visualized as in the diagram below: The TCT creates or modifies the 
following data structures in the task plan: 

• TeamList : Vector of FlightGroups and their UAVs and their weapons 

• AssetSet: Vector of UAVs in the team  

• Assignments : Vector of TaskAssignment 
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The TaskAssignment structure associates items as follows:  

• aMissionProcess : MissionProcess 

• assocTarget : System in an Area 

• myStartTime : TimeData 

• assocTeam : FlightGroup 

In response to this plan, flight group objects are created in the squad and filled in appropriately. 
Although the current TCT is not capable of this, it is also possible for a TCT function to create 
and destroy various mission processes to create a more efficient situation. The inputs and outputs 
to the external C++ TCT code are documented in the Java Documentation for the SHARED 
software. 

Mission Planning Activity. At the Mission Situation level, each mission process’ mission 
planning task contains a Mission Plan that contains the specific activities that will be performed 
(generated by the TDT based on the types of targets), the start time of each activity (inferred 
from the ordering of activities provided by the  TDT agent for the team as described below), the 
UAV assigned to the activity (set by the TDT agent for the team), the weapons used for each 
activity (the UAV’s suite of weapons is set by the TCT agent for the squad, and the specific 
allocation of weapons against activities is set by the TDT agent), the target of each activity (set 
by the TDT), and the route for each activity that involves movement (set by the UAV’s CPP). 

The following is automatically created on the mission plans for each Mission Process in each 
mission situation: 

• TargetSet: Vector of targets (equipment) for this Mission Process  

Because the mission planning task for each particular Mission Process is assigned to the TDT for 
that team that is responsible for the Mission Process, the TDT is called, returning the following 
information: 

• ActivityList : Vector of Activities  

• Assignments : Vector of Assignment (one each activity) 

The MissionAssignment structure associates items as follows:  

• anActivity : Activity  

• aTarget : the target Tangible object of this activity 

• assocWeapons : Vector of Weapons for this UAV for this activity, if any 

• assocUAV : UAV 

• myStartTime : TimeData  

The TDT performs the functions of creating appropriate activities for each target and assigning 
them to UAVs in an ordered list, along with setting any sensor or weapon selections and 
parameters.  

The table below describes each of the Military Activities, and the parameters that must be set by 
the TDT for that activity, the rules about simultaneity (when the next scheduled activity is called 
by the UAV Controller), and the criteria that govern the completion of that activity 
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Table 4.13 Description of each Military Activity 

 

Activity Associated 
Equip  

Duration Target Other 
Parameters 

Simultaneity Completion 
Criteria 

Attack ARM, Seeker, 
GPSBomb, 
Submunition, 
or Decoy 

No 
duration.  

An 
equipment 
unit 

 Next activity 
started when 
weapon fired. 

Marked complete 
when weapon fired 

Sense GMTI, SAR, 
EOSensor 

. 

No 
duration. 

An 
equipment 
unit 

GMTI: area to 
cover (4 
doubles) 

SAR/EO: size 
(1,2,3), 
resolution 
(1,2,3) 

Next activity 
started when the 
sensor is pointed. 

Marked complete 
when duration 
expires or simulator 
indicates sense action 
is complete. 

Protect None (CPPS 
points sensors) 

 

Duration of 
the stage in 
which 
activity is 
planned. 

A 
Protected
Zone 
outside of 
a blue 
area. 

 Next activity 
started when 
duration expires. 

Marked complete 
when duration 
expires. 

Locate None (CPPS 
points sensors) 

Maximum 
duration of 
the activity 

A suspect 
equipment 
unit 

 Next activity 
started when 
locate is 
complete 

Marked complete 
when duration 
expires or when the 
targetlist changes. 

Refuel None 

 

Duration of 
refuel 

A Blue 
Tanker 

 Next activity 
started when the 
duration expires. 

Marked complete 
when duration 
expires. 

Jam None 

 

Duration of 
the 
jamming 

An 
equipment 
unit 

 Next activity 
started when the 
jammers 
activated.  

Marked complete 
when duration 
expires. 

FlyTo None 

 

Duration of 
flight 
(maximum) 

A 
Tangible 
unit 

Latitude, 
Longitude, 
Altitude of 
destination 

Next activity 
started when the 
flyto is 
completed. 

Marked complete 
when duration 
expires or when the 
UAV is located 
within the 
effectiveness of the 
weapon or sensor 
selected for the next 
action, or the UAV 
has reached the 
Protected Zone, or 
when the destination 
has been reached 
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When the simulation is running, new red units in areas of interest will be evaluated according to 
the guidance and ROE, and new targets will be assigned to the mission’s targetlist. When the 
targetlist changes, the team may automatically call the TDT for replanning; old activities will be 
destroyed and new activities and assignments will be created as set by the TDT. The team will 
also track the asset UAVs on the team, and call the TDT for a replan when the asset list changes. 

The timing of calling external agents is shown in the Java Documentation for the SHARED 
software. Automatic triggering of TDT replanning for a team occurs when a new item appears on 
the targetlist for the mission, the asset list for the team changes, or a set amount of time has 
elapsed. All of these parameters are under commander control. The inputs and outputs from the 
external C++ TDT modules are documented in the Java documentation for the SHARED 
software. 

Flight Path Planning Activities. Because the CPP for a particular UAV is assigned the route 
planning activity, the performance of an activity requiring route planning causes the 
UAVController to invoke the CPP, which writes the following to each of the mission plans that 
the particular UAV participates in: 

• Routes : Routeplan for next segment 

The CPP modifies in each MissionAssignment structure: 

• assocRoute: route for next leg of this activity 

When the UAVController is processing a Protect or Locate activity, it checks whether it has a 
team name. If it does not have a team name, it needs to create a team name and find all the 
cohorts for this team. While doing so, it fills in its cohort’s team name field and its cohort’s 
cohort list. Each UAVController keeps track of its current team name and its team cohorts. To 
create the team name, the UAVController uses the current number listed as a class property of 
UAVController, and then increments the number. To find the team members (cohorts), the 
UAVController looks through all the Protect activities in the same MissionProcess as its Protect. 
If the target of that Protect is the same as the target of its own Protect or find it adds the 
performer of that activity to the cohort list. After creating the cohort list, it assigns both the team 
name and the cohort list to each member on the cohort list. The internally implemented (Java) 
CPP-P is called for FlyTo  activity planning. The CPP-S is called as an external module for all 
Protect activities. The inputs and outputs to the external C++ CPP-S are documented in the Java 
documentation for the SHARED software.  

The algorithm for the CPPP module is contained in the Java CPPPAgent class and documented 
in the Java Documentation for the SHARED software. The algorithm compares 8 possible future 
positions (each one time step away) and chooses the one with the best score based on its 
proximity to the current goal and the threat posed by known enemy units. If the UAV has not 
recently made progress the weight given to the threat scores is reduced. The exact score 
calculations are shown in the Java documentation. 

Roles. Roles are used as the communication mechanism between the situation model and the 
interaction design system. Roles that are shared between objects in different modules define the 
affordance dependencies between them; for example, a particular type of view is defined as 
affording a particular type of object or information, and certain types of elements afford the 
display of certain types of data. The use of roles provides independence between the various 
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modules to allow the automatic interaction designer to make design decisions based on situation 
semantics. 

There are four main types of roles that connect the interaction and the domain: object roles, 
usage roles, information roles, and representation roles. The interactions between these roles and 
the domain and interactions systems are shown below, and each is discussed separately. 

 

Figure 4.39 Interactions between the Roles and the Domain and Interactions Systems 

 

Representation roles provide the ability to determine the appropriate Element to represent each 
DataObject. Domain data statically possess individual representation roles, which describe the 
basic type of data they represent. For example, the State Data domain class possesses the role 
Boolean, and the Text Data class possesses the role String. Elements in the Interaction Model 
also possess statically assigned roles, which describe the type of data they afford. For example, a 
State Element has the Boolean Role.  

Interaction Views may define their components generically, as abstract Interaction Elements. 
When the view is instantiated, it selects its components by selecting the object and usage roles it 
affords, then selects the specific element to represent the data based on the representation role of 
that data. For example, a State Data, embodying the Boolean role, is represented in the 
interaction design by a State Element, which affords the display of Boolean information. 

Artifacts have Object Type Roles that are statically pre-assigned. These roles provide ability to 
constrain detail and visualization subviews. When composing itself, each view may select 
elements to represent only certain object type roles. The VisualizationView shows objects having 
OrganizationRole or ThingRole, while the InformationView shows objects having the 
InputOutputRole. 

Domain artefacts possess object roles based on their supertype. For example, a Human takes an 
“Actor” role. Interaction views afford certain object roles by selecting the objects to include 
based on their roles. For example, the visualization view has a referent that has an object role of 
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SituationRole, and selects the parts of the referent with a PhysicalObjectRole to display in the 
visualization view. 

Usage roles are assigned dynamically to a Data situation object by the Artefact domain object 
that owns it. The usage role assigned to a data object represents how the data’s owner uses the 
data, regardless of the type of information that data represents (boolean, string, continuous, etc.). 
For example, an object’s name has an Identity Usage Role and its location has a Location Usage 
Role. Interaction Views are predefined to afford certain usage roles. For example, the 
Specification View shows information about an object that has any of the following roles: 
parameter, value, or setter. Usage roles provide the ability to reveal or hide different types of 
information about objects by coding the “use” of a particular piece of data for its owner object. 
Data usage roles are exclusive (each data has only one). 

Information roles are statically assigned to Interaction Views and Domain Activities, to allow the 
required views to be generated for tasks. The information role of a view indicates what 
information type it affords, while the information role of an activity defines its information 
requirements. For example, the Command Information Role is afforded by the Specification and 
Command Interaction Views, and is required by the Command/Control activity. 

4.6.2 Interaction Model Detailed System Design 

This section provides the details of the organization and operation of the interaction model, the 
interaction agent, and the interaction design. 

The SHARED system supports the human side of mixed-initiative interactions explicitly by 
integrating multiple software agents (like AID) that can automate certain activities, and 
automatically assigning all activities that don’t have capable software agents to the human. It 
supports variable initiative interaction by allowing the human to investigate information about all 
activities they are capable of, and providing interactions to support those capabilities. In this 
way, the human commander can easily and efficiently over-ride or modify the behavior and 
guidance of the software agents who are effectively part of his team. 
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Figure 4.40 Diagram for Interaction Model 

 

Because the AID system is responsible for providing interaction support for all of the activities 
assigned to the human actor in the situation, the Interaction Model automatically creates views 
for each of the creative activities, and each interaction level is filled with the objects that appear 
in the situation. Each view in AID is defined in terms of the activities it facilitates; the views are 
automatically selected to match the activity needs, and each view automatically fills itself based 
on the status of the situation. Because the human commander is defined as being capable of all 
but the military activities, most of the activities present in the situation are automatically 
available to him through the user interface. “Backup” activities, however, are not given the 
prominence that is given to the activities assigned to the commander. Any automation level is 
available to the commander at any time if he chooses to intervene, or if an external reasoner 
becomes disabled or is unavailable. In this way, the full spectrum of autonomy is supported, and 
the commander has full control of any component at any time. 

The creation of a user interface to meet the interaction needs of the human is driven by the 
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assignments and responsibilities of the user. The situation representation contains the objects and 
relationships that express these needs: as shown in the diagram above, the user is assigned to 
monitor the task situation (made up of missions), command the entities involved, and evaluate 
the plan. A diagram showing the default assignments of activities to the human commander is 
shown to the left. Lines between the commander and an activity indicate that those activities are 
assigned by default to a human user. 

The diagram below illustrates some of the relationships in the situation representation that 
support automated interaction design. The HSI system is made up of a UI Console (which is part 
of the user’s available equipment set) and the AID Agent. AID’s assigned activity is the Human-
System Interaction Activity, focused on the task situation that the human is responsible for. In 
this way, the AID agents have access to rich semantic information about the situation and the 
user’s place in that situation, allowing them to reason about ways to meet the interaction needs 
that result. 

 

Figure 4.41 Examples of  Relationships in the Situation Representation 

 
Interaction Model. The interaction model is made up of four hierarchical levels, each composed 
of objects from the next lower level: 

• Interaction Design Agent: represents the entire interaction design 

• Interaction Views: represent information that is chunked for a specific interaction 
purpose 

• Interaction Elements: represent the discrete entities the user interacts with, like 
situation elements (planes, valves) and interaction components (sets of exclusive 
choices, forms) 
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• Interaction Primitives: the smallest parts of interactions; the individual labels, 
values, icons, and selectors.  

The classes in the Interaction Model are shown below. 

 
Figure 4.42 The Classes in the Interaction Model 
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Figure 4.43 General Flow of the Interaction Design Process 

 

The most abstract class in the Interaction Model is InteractionObject, which has the parameters 
myComponents, myContainer, myReferent, myName (inherited by all interaction model classes). 
Individual views are selected by the Interaction Agent based on the active tasks for the user by 
matching the Activities currently assigned to the user with the info roles of the available views in 
the interaction model. Views are also created for all other activities that are necessary to support 
the user’s capabilities.  
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The interaction model in AID is a self-composing productive system. When an instance of any 
interaction object is created for a particular user and a particular domain object (the referent of 
the interaction object), that instance is responsible for adapting to the communication needs of 
the referent and the user. The interaction model uses internal rules and constraints based on 
current practice in task analysis, requirements management, and interaction design, as 
appropriate to the responsibilities of each object. The general flow of the interaction design 
process is shown above. 

Interaction objects also select their sub-components for the specific context, based on 
appropriateness to the situation and the user. Each subcomponent then tunes itself by selecting 
and tuning its own subcomponents. Using this process of self-composition, an entire interaction 
(or only the parts that need to be changed) is created or modified in real time when needed. Each 
interaction design is specialized dynamically to suit the user, the objects in the real world, the 
interaction devices, and the required tasks. In use, each design dynamically responds to user 
input (or changes in the system) by redesigning specific parts of itself, as needed.  

The objects in the hierarchical Interaction Model are used to create the Interaction Design for the 
current situation and user. The Interaction Design Agent selects views to match current tasks, the 
views create elements to match their roles, the interaction elements create primitives for each 
part of themselves, and the primitives set their values appropriately to represent the object, data, 
or action. 

Specification View

StaticElement: “Heading”

StaticElement: “Speed”

StaticElement: “FuelGauge”

StaticElement: “FuelRate”

NumberElement: “SpeedSetting”

ValuerPrimitive: value = “0”
LabelPrimitive: category = “Speed Setting”
LabelPrimitive: unit = “kph”
ValuePrimitive: min = “0”
ValuePrimitive: max = “8000”
ValuePrimitive: decimal = 0
MoverPrimitive: “Adjusters”
TextEnterPrimitive: “ValueEnter”

LabelPrimitive: category = “Heading”
LabelPrimitive: unit = “degrees”
ValuePrimitive: value = “0”

 
Figure 4.44 An Example Portion of an Interaction Design 
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The full interaction design is a hierarchical structure, with views that contain elements and 
elements that contain primitives that have all variables filled. An example portion of an 
interaction design is shown above. This example is a partial design for a Specification View for 
an aircraft. The heading, speed, fuel gauge, fuel rate, and speed setting data have been selected 
for inclusion because they all have the usage role of parameter when associated with an aircraft. 

 The Number Element was selected to represent the Speed Setting data because speed is 
represented by a continuous data object with the representation role of “number”, which is the 
same role held by Number Elements. Each data property of the speed setting is represented as 
part of the number element, using the appropriate primitives; for example, value primitives are 
used to represent current value, minimum value, maximum value, and the decimal places, while 
a text enter primitive is used to represent the editable nature of this value. 

4.6.3 Presentation Model Detailed System Design 

The presentation model is separate from the interaction model and the interaction design, in 
order to provide adaptation to multiple types of user interface devices, and to separate user 
requirements from the physical satisfaction of these requirements.  For example, on a CRT-based 
system, the presentation model converts the interaction design into a presentation by selecting 
user interface components like windows (to enclose the interaction), frames (for views), and 
widgets (for elements). The presentation components are then specialized according to the 
parameters of the objects in the situation. In addition to the device-specific knowledge about 
translation from interaction objects to presentation objects, each presentation model also contains 
a number of heuristics that specify how to select and specialize presentation objects, and how to 
code and present the interaction object information (for example, how to line up widgets, add 
appropriate status coding, and represent objects symbolically or textually). 
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5 Research Required 

This section summarizes the work still required on each of the SHARED modules. 

5.1 TCT Research Required 

Currently, TCT estimates the time for each stage based on the equations we provided. How to 
schedule the whole mission in an optimal way is still under consideration. Specifically, Rule 
Based sequencing needs to be further developed. 

The preliminary allocation is based on the proportional control. Distributed resource allocation 
with different dynamics still needs to be developed in order to deal with more complicated 
situations.  

Moreover, the functionality position of TCT in the situation as cooperative player and non-
corporative player has been noticed in SHARED. Further analysis on how to design this type of 
player in the situation is required. In the short term, simplified (super-real time) simulation 
capability is also advocated. 

5.2 TDT Research Required 
5.2.1 TDT-Hierarchical 

We recognize that considerable additional effort is required to refine our present TDT-
Hierarchical. We have identified the following research enhancements required: 

 Estimation Intent of the adversary. 

 Consideration of the different cultural and social idiosyncrasies 

 Implementation of adaptation of ordinal game for interfacing with human commanders 

 Further details heuristic based upper level planning in hierarchical TDT 

 Computation strategies for non-zero-sum games  

 Other jamming deployment strategies and algorithm 

5.2.2 TDT-ULTRA 

Additional effort would have resulted in considerable improvement of the TDT-ULTRA. Some 
of our plans and research requirements have included the following topics which remain 
unfinished: 

 Continue to upgrade and test ULTRA. Additional features that could have been 
considered include: 

o Estimation of enemy intent. 

o Other jamming and decoy control strategies. 

o 3-D information in Blue target selection in ULTRA. 
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o Adaptive adjustments of parameters in cost functions.  

o The effects of asymmetric collateral damage weights. 

 Continue to perform experiments using ULTRA with 

o Red Controls ignored. 

o Red Controls determined based on a Zero-Sum game.  

o Red Controls determined based on a Nonzero-Sum game. 

 Continue to investigate ULTRA with distance discount factor for: 

o Specific target selection by sub-teams of UAVs  

o Specific target selection by scattered individual UAVs  

 Perform Experiments on sensor-based BDA with sensor UAVs having partial information 
about the battlefield. 

 Game theoretic approach is essential in battle management in future combat systems. 
More emphasis should be placed on it. 

 The game approach becomes more effective if there is a mechanism for estimating the 
enemy’s intent. Very few results are available in this area. 

5.3 CPP Research Required 
5.3.1 CPPP 

CPPP adopts a gradient-climbing approach to perform path planning. This approach has the 
advantages of good scalability, low computation burden, and low memory requirements and 
complexity, which facilitate on-board implementation. But it also has the disadvantage of easy to 
get "trapped" in local optimum in a resource profile. The DATE algorithm developed by us could 
overcome the problem, but at a cost that en route safe UAV-to-threat distance is not guaranteed. 
The algorithm could be enhanced via the idea of tube generation, selection, and following. 

Also currently a heuristic approach is adopted to handle the case when time constraint exists. It 
would be desirable to determine the flight path with a theoretical approach, in which other 
physical constraints, including fuel consumption, fitness of UAVs, and so on, may also be 
accommodated relatively easily in the framework. 

Moreover, to determine the conditions under which the UAV team achieves cohesion when time 
delays and asynchronism exist in a communication network is also very important since 
generally their impact on the system performance is significant in reality. 

5.3.2 CPPS  

Further research would have refined the performance of the existing algorithms. Such research 
would have included incorporating heuristics and learning methods (e.g. utilizing simulation 
methods such as Neuro-Dynamic Programming) in the planning algorithm to enhance search 
efficiency in terms of increased planning ability (e.g. through better information utilization) and 
decreased computational load. It also would have included improving the control of the sensors, 
including the ability to position sensors independently of vehicle motion and the control of 
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multiple sensors. This entails the development of control strategies (for both sensors and vehicle 
paths; and cooperative and single-UAV sensor control) to maximize the payoff of sensor use 
while maintaining a feasible computational load. Further research would also have meant 
conducting more experiments, both inside and outside of the SHARED system (using modularity 
to ensure improved performance in the SHARED system.) Additionally, methods to incorporate 
moving targets would have to be included in any additional research in order to cover that aspect 
of the problem. The probabilistic nature of the target information base was expected to have 
made this relatively easy.  

5.4 VIA Research Required 

Now that we have achieved a robust software system to embody SHARED, our third year MICA 
efforts were intended to emphasize algorithm improvement and extension of human interaction 
into the lowest levels of human interaction in the plan. Currently, the human commander may 
affect the plan through expression of suspicions, ROE, and guidance, and has full control over 
automated replanning triggers. But, he cannot now directly manipulate the elements of an 
automated plan (“assign this activity to that UAV rather than this one” or “fly through this 
corridor rather than that”). Introducing these capabilities reveals a number of issues involving 
overlapping areas of responsibility and involves intricate plan dependency parameters that we are 
eager to investigate. In addition, numerous improvements to both the models and the reasoning 
employed in the domain and the interaction generators is anticipated as the technology evolves, 
along with APIs for user interaction designers, agent developers, and domain model 
maintenance. 
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